Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
MedComm (2020) ; 4(6): e403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37881785

RESUMEN

Estrogen receptor α (ERα) serves as an essential therapeutic predictor for breast cancer (BC) patients and is regulated by epigenetic modification. Abnormal methylation of cytosine phosphoric acid guanine islands in the estrogen receptor 1 (ESR1) gene promoter could silence or decrease ERα expression. In ERα-negative BC, we previously found snail family transcriptional repressor 2 (SNAI2), a zinc-finger transcriptional factor, recruited lysine-specific demethylase 1 to the promoter to transcriptionally suppress ERα expression by demethylating histone H3 lysine 4 dimethylation (H3K4me2). However, the role of SNAI2 in ERα-positive BC remains elusive. In this study, we observed a positive correlation between SNAI2 and ESR1 methylation, and SNAI2 promoted ESR1 methylation by recruiting DNA methyltransferase 3 beta (DNMT3B) rather than DNA methyltransferase 1 (DNMT1) in ERα-positive BC cells. Subsequent enrichment analysis illustrated that ESR1 methylation is strongly correlated with cell adhesion and junction. Knocking down DNMT3B could partially reverse SNAI2 overexpression-induced cell proliferation, migration, and invasion. Moreover, high DNMT3B expression predicted poor relapse-free survival and overall survival in ERα-positive BC patients. In conclusion, this study demonstrated the novel mechanisms of the ESR1 methylation mediated with the SNAI2/DNMT3B complex and enhanced awareness of ESR1 methylation's role in promoting epithelial-mesenchymal transition in BC.

2.
Open Life Sci ; 18(1): 20220722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37791060

RESUMEN

Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.

3.
Front Immunol ; 14: 1129746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090700

RESUMEN

Context: Severe acute respiratory syndrome-coronavirus 2 (COVID-19) vaccines may incur changes in thyroid functions followed by mood changes, and patients with Hashimoto thyroiditis (HT) were suggested to bear a higher risk. Objectives: We primarily aim to find whether COVID-19 vaccination could induce potential subsequent thyroid function and mood changes. The secondary aim was to find inflammatory biomarkers associated with risk. Methods: The retrospective, multi-center study recruited patients with HT receiving COVID-19-inactivated vaccines. C-reactive proteins (CRPs), thyroid-stimulating hormones (TSHs), and mood changes were studied before and after vaccination during a follow-up of a 6-month period. Independent association was investigated between incidence of mood state, thyroid functions, and inflammatory markers. Propensity score-matched comparisons between the vaccine and control groups were carried out to investigate the difference. Results: Final analysis included 2,765 patients with HT in the vaccine group and 1,288 patients in the control group. In the matched analysis, TSH increase and mood change incidence were both significantly higher in the vaccine group (11.9% versus 6.1% for TSH increase and 12.7% versus 8.4% for mood change incidence). An increase in CRP was associated with mood change (p< 0.01 by the Kaplan-Meier method) and severity (r = 0.75) after vaccination. Baseline CRP, TSH, and antibodies of thyroid peroxidase (anti-TPO) were found to predict incidence of mood changes. Conclusion: COVID-19 vaccination seemed to induce increased levels and incidence of TSH surge followed by mood changes in patients with HT. Higher levels of pre-vaccine serum TSH, CRP, and anti-TPO values were associated with higher incidence in the early post-vaccine phase.


Asunto(s)
COVID-19 , Enfermedad de Hashimoto , Humanos , Vacunas contra la COVID-19/efectos adversos , Estudios Retrospectivos , COVID-19/prevención & control , COVID-19/complicaciones , Tirotropina , Anticuerpos
5.
Front Oncol ; 11: 628814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249678

RESUMEN

PURPOSE: The basic helix-loop-helix transcription factor (bHLH) transcription factor Twist1 plays a key role in embryonic development and tumorigenesis. p53 is a frequently mutated tumor suppressor in cancer. Both proteins play a key and significant role in breast cancer tumorigenesis. However, the regulatory mechanism and clinical significance of their co-expression in this disease remain unclear. The purpose of this study was to analyze the expression patterns of p53 and Twist1 and determine their association with patient prognosis in breast cancer. We also investigated whether their co-expression could be a potential marker for predicting patient prognosis in this disease. METHODS: Twist1 and mutant p53 expression in 408 breast cancer patient samples were evaluated by immunohistochemistry. Kaplan-Meier Plotter was used to analyze the correlation between co-expression of Twist1 and wild-type or mutant p53 and prognosis for recurrence-free survival (RFS) and overall survival (OS). Univariate analysis, multivariate analysis, and nomograms were used to explore the independent prognostic factors in disease-free survival (DFS) and OS in this cohort. RESULTS: Of the 408 patients enrolled, 237 (58%) had high mutant p53 expression. Two-hundred twenty patients (53.9%) stained positive for Twist1, and 188 cases were Twist1-negative. Furthermore, patients that co-expressed Twist1 and mutant p53 (T+P+) had significantly advanced-stage breast cancer [stage III, 61/89 T+P+ (68.5%) vs. 28/89 T-P- (31.5%); stage II, 63/104 T+P+ (60.6%)vs. 41/104 T-P- (39.4%)]. Co-expression was negatively related to early clinical stage (i.e., stages 0 and I; P = 0.039). T+P+ breast cancer patients also had worse DFS (95% CI = 1.217-7.499, P = 0.017) and OS (95% CI = 1.009-9.272, P = 0.048). Elevated Twist1 and mutant p53 expression predicted shorter RFS in basal-like patients. Univariate and multivariate analysis identified three variables (i.e., lymph node involvement, larger tumor, and T+P+) as independent prognostic factors for DFS. Lymph node involvement and T+P+ were also independent factors for OS in this cohort. The total risk scores and nomograms were reliable for predicting DFS and OS in breast cancer patients. CONCLUSIONS: Our results revealed that co-expression of mutant p53 and Twist1 was associated with advanced clinical stage, triple negative breast cancer (TNBC) subtype, distant metastasis, and shorter DFS and OS in breast cancer patients. Furthermore, lymph nodes status and co-expression of Twist1 and mutant p53 were classified as independent factors for DFS and OS in this cohort. Co-evaluation of mutant p53 and Twist1 might be an appropriate tool for predicting breast cancer patient outcome.

6.
Cell Death Dis ; 12(6): 502, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006834

RESUMEN

Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptor Notch3/metabolismo , Animales , Neoplasias de la Mama/genética , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Pronóstico , Análisis de Supervivencia , Transfección
7.
Front Oncol ; 11: 627713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854967

RESUMEN

BACKGROUND AND OBJECTIVES: In China, over 90% of esophageal cancer (EC) cases are esophageal squamous cell carcinoma (ESCC). ESCC is a frequently malignant tumor with poor prognosis despite the development of comprehensive therapeutic strategies, for which there is still a lack of effective prognostic factors. Previous studies found that the abnormal expression of TRPC1 is closely related to the proliferation, invasion, metastasis, and differentiation of various tumors. However, the relationship between TRPC1 and ESCC is currently unclear. The present study aimed to clarify the clinical significance of TRPC1 and to preliminarily assess the molecular mechanism by which TRPC1 regulates cell proliferation, migration, and invasion in ESCC. MATERIALS AND METHODS: Immunohistochemistry (IHC) was used to determine the expression of TRPC1 and Ki-67 in 165 cases of ESCC. The correlations between TRPC1 expression and clinicopathological characteristics were determined, and both univariate and multivariate analyses were utilized to quantify the impact of TRPC1 expression on patient survival. Cell Counting Kit-8, scratch wound healing, and transwell assays were used to determine the effects of TRPC1 on proliferation, migration, and invasion in ESCC in vitro, respectively. RESULTS: The positive expression rate of TRPC1 showed significantly decreased in ESCC (45.50%) compared with the levels in normal esophageal mucosa (NEM; 80.80%) and high-grade intraepithelial neoplasia (HGIEN; 63.20%) (P<0.001). Higher expression rate of TRPC1 was associated with low lymph node metastasis (P<0.001), high differentiation (rs = 0.232, P=0.003), and low Ki-67 (rs = -0.492, P<0.001). We further revealed that low expression of TRPC1 was associated with poor prognosis (Disease-free survival, DFS: 95% CI=0.545-0.845, P=0.001; Overall survival, OS: 95% CI=0.553-0.891, P=0.004). Furthermore, we showed that downregulation of TRPC1 promoted the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line EC9706 in vitro. In contrast, overexpression of TRPC1 inhibited the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line KYSE150 (P<0.01), in a manner at least in part mediated through the AKT/p27 pathway. CONCLUSION: TRPC1 inhibited the proliferation, migration, and invasion of EC9706 and KYSE150 cells, at least, in part mediated through the AKT/p27 pathway in vitro. The downregulation of TRPC1 may be one of the most important molecular events in the malignant progression of ESCC. TRPC1 could be a new candidate tumor suppressor gene and a new prognostic factor of ESCC.

8.
Transl Cancer Res ; 10(1): 210-222, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35116253

RESUMEN

BACKGROUND: Lymphatic metastasis is one of the main factors affecting prognosis in esophageal squamous cell carcinoma (ESCC). Vascular endothelial growth factor-C (VEGF-C) is an important factor that promotes lymphangiogenesis. Survivin also plays a significant role in lymphatic invasion. However, the role and mechanism of their co-expression are still unclear in ESCC. The purpose of this study was to investigate whether the co-expression of VEGF-C and survivin could be a potential marker to predict patient prognosis and survival in ESCC. METHODS: The levels of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR-3), survivin, and Ki-67 were determined by immunohistochemistry (IHC) in 97 ESCC patient tumors. The correlations of co-expression of VEGF-C and survivin with pathological features and survival results were also assessed. RESULTS: High VEGF-C expression was observed in 64.9% of the patients and significantly correlated with T stage (P=0.024), node status (P=0.038), and lymph node metastasis (P=0.015). High survivin expression was significantly associated with T stage (P=0.013), N stage (P=0.016), lymph node metastasis (P=0.005), and differentiation (P=0.044) in 67.0% of the patients. Co-expression of VEGF-C and survivin (V+S+) was significantly associated with T stage (P<0.001), N stage (P=0.015), lymph node metastasis (P=0.003), differentiation (P=0.0045), and Ki-67 levels (P=0.024). High expression of VEGF-C or survivin was associated significantly with worse disease-free survival (DFS) and overall survival (OS) (P<0.05). Moreover, the V+S+ group had a worse DFS (P<0.001) and OS (P=0.001) than any other group (i.e., V-S-, V+S-, V-S+). Furthermore, multivariate DFS analyses (95% CI: 1.147-2.220, P=0.006) and multivariate OS analyses (95% CI: 1.080-2.193, P=0.017) revealed that co-expression of VEGF-C and survivin was an independent prognostic factor in ESCC patients. CONCLUSIONS: Co-expression of VEGF-C and survivin was predictive of poor prognosis in ESCC. Combined detection of VEGF-C and survivin could represent a feasible and effective marker to predict the prognosis and survival of ESCC patients.

9.
Analyst ; 145(19): 6237-6242, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32839801

RESUMEN

HPV-induced cervical cancer is one of the most lethal cancers. Therefore, the development of a reliable and accurate method for the early diagnosis of HPV infections is highly important. Here, gold nanoparticles (AuNPs) were utilized as mass tags in an immuno-capture LI-MS assay for the detection of HPV marker proteins. Through the optimization of the amount of antibodies and surface charges on AuNPs, high antigen detection efficiency with minimal non-specific binding was achieved. With optimized antibody-conjugated AuNPs, low attomole amount of HPV proteins in HeLa cell lysate was quantified.


Asunto(s)
Oro , Nanopartículas del Metal , Biomarcadores , Células HeLa , Humanos , Proteínas
10.
Breast Cancer Res Treat ; 182(1): 21-33, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32415497

RESUMEN

PURPOSE: Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 - TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer. METHODS: Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer. RESULTS: Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER -) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium-mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis. CONCLUSIONS: We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/metabolismo , Canales Catiónicos TRPC/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Canales Catiónicos TRPC/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
11.
Int J Cancer ; 147(2): 490-504, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32020593

RESUMEN

Resistance to chemotherapy continues to be a critical issue in the clinical therapy of triple-negative breast cancer (TNBC). Epithelial-mesenchymal transition (EMT) is thought to contribute to chemoresistance in several cancer types, including breast cancer. Identification of the key signaling pathway that regulates the EMT program and contributes to chemoresistance in TNBC will provide a novel strategy to overcome chemoresistance in this subtype of cancer. Herein, we demonstrate that Notch1 positively associates with melanoma cell adhesion molecule (MCAM), a unique EMT activator, in TNBC tissue samples both at mRNA and protein levels. High expression of Notch1 and MCAM both predicts a poor survival in basal-like/TNBC patients, particularly in those treated with chemotherapy. The expression of Notch1 and MCAM in MDA-MB-231 cells gradually increases in a time-dependent manner when exposing to low dose cisplatin. Moreover, the expressions of Notch1 and MCAM in cisplatin-resistant MDA-MB-231 cells are significantly higher than wild-type counterparts. Notch1 promotes EMT and chemoresistance, as well as invasion and proliferation of TNBC cells via direct activating MCAM promoter. Inhibition of Notch1 significantly downregulates MCAM expression, resulting in the reversion of EMT and chemoresistance to cisplatin in TNBC cells. Our study reveals the regulatory mechanism of the Notch1 pathway and MCAM in TNBC and suggesting that targeting the Notch1/MCAM axis, in conjunction with conventional chemotherapies, might be a potential avenue to enhance the therapeutic efficacy for patients with TNBC.


Asunto(s)
Cisplatino/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Receptor Notch1/genética , Receptor Notch1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antígeno CD146/genética , Antígeno CD146/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Ratones , Pronóstico , Regiones Promotoras Genéticas , ARN Interferente Pequeño/farmacología , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
MedComm (2020) ; 1(2): 211-218, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34766119

RESUMEN

Axillary reverse mapping (ARM) is a technique to identify arm lymphatic drainage during axillary lymph node dissection (ALND). This study compared the feasibility of ARM using indocyanine green (ICG) or methylene blue (MB), and accessed the oncologic safety of the procedure. Overall, 158 patients qualified for ALND were enrolled. The characteristics of ARM-identified nodes were recorded with ICG (n = 78) or MB (n = 80) visualization. Fine-needle aspiration cytology (FNAC) of the nodes were performed and validated by histologic analysis. The nodal identification rate in the ICG group significantly surpassed that of the MB group (87.2% vs 52.5%, P < .05) with fewer complications. Note that 10.9% of the patients had metastatic involvement of the ARM-identified nodes. Also 80% of the positive nodes were found in areas B and D, while the ARM-identified nodes mainly located in area A. All the 51 nodes diagnosed as negative of malignancy by FNAC were free of metastasis. Nodal metastasis was significantly correlated with extensive nodel involvement, advanced disease, and the characteristics of identified nodes. In conclusion, ICG appears superior to MB for ARM nodes identification. FNAC, together with the features of primary tumors and ARM nodes, can delineate which nodes could be preserved during ALND.

13.
Cell Death Dis ; 10(3): 175, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787278

RESUMEN

More and more evidence indicates that circular RNAs (circRNAs) have important roles in several diseases, especially in cancers. However, their involvement remains to be investigated in breast cancer. Through screening circRNA profile, we identified 235 differentially expressed circRNAs in breast cancer. Subsequently, we explored the clinical significance of two circTADA2As in a large cohort of triple-negative breast cancer (TNBC), and performed functional analysis of circTADA2A-E6 in vitro and in vivo to support clinical findings. Finally, we evaluated the effect of circTADA2A-E6 on miR-203a-3p and its target gene SOCS3. We detected two circRNAs, circTADA2A-E6 and circTADA2A-E5/E6, which were among the top five differentially expressed circRNAs in breast cancer. They were consistently and significantly decreased in a large cohort of breast cancer patients, and their downregulation was associated with poor patient survival for TNBC. Especially, circTADA2A-E6 suppressed in vitro cell proliferation, migration, invasion, and clonogenicity and possessed tumor-suppressor capability. circTADA2A-E6 preferentially acted as a miR-203a-3p sponge to restore the expression of miRNA target gene SOCS3, resulting in a less aggressive oncogenic phenotype. circTADA2As as promising prognostic biomarkers in TNBC patients, and therapeutic targeting of circTADA2As/miRNA/mRNA network may be a potential strategy for the treatment of breast cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , ARN Circular/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Metástasis Linfática , Células MCF-7 , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Circular/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factores de Transcripción/metabolismo , Trasplante Heterólogo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología
14.
Cancer Lett ; 440-441: 156-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336197

RESUMEN

Resistance to chemotherapy remains a significant problem in the treatment of breast cancer, especially for triple-negative breast cancer (TNBC), in which standard systemic therapy is currently limited to chemotherapeutic agents. Our study aimed to better understand the molecular mechanisms that lead to failure of chemotherapy in TNBC. Herein, we observed elevated expression of Notch1 and major vault protein (MVP) in MDA-MB-231DDPR cells compared to their parental counterparts. We demonstrated that Notch1 could positively regulate the expression of MVP. Also, Notch1 intracellular domain (ICD) was capable of binding to CBF-1 on the promoter of MVP to drive its transcription, resulting in activation of AKT pathway and promoting the progress of epithelial to mesenchymal transition (EMT). Conversely, silencing of Notch1 and MVP suppressed AKT pathway, reduced EMT and enhanced the sensitivity of TNBC cells to cisplatin and doxorubicin. Survival analysis indicated that the MVP was closely related to shorter recurrence-free survival (RFS) in patients with TNBC. Collectively, this study provides evidence that Notch1 activates AKT pathway and promotes EMT partly through direct activation of MVP. Targeting Notch1/MVP pathway appears to have potential in overcoming chemoresistance in TNBC.


Asunto(s)
Receptor Notch1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Regulación hacia Abajo , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/biosíntesis , Receptor Notch1/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Partículas Ribonucleoproteicas en Bóveda/biosíntesis , Partículas Ribonucleoproteicas en Bóveda/genética
15.
Cell Death Dis ; 9(12): 1171, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518916

RESUMEN

Recent studies indicate that the long noncoding RNA ATB (lncATB) can induce the epithelial-mesenchymal transition (EMT) in cancer cells, but the specific cellular targets of lncATB require further investigation. In the present study, the upregulation of lncATB in breast cancer cells was validated in a TGF-ß-induced EMT model. Gain- and loss-of-function studies demonstrated that lncATB enhanced cell migration, invasion and clonogenicity in vitro and in vivo. LncATB promoted the EMT by acting as a sponge for the miR-200 family and restoring Twist1 expression. Subsequently, the clinical significance of lncATB was investigated in a cohort of breast cancer patients (N = 131). Higher lncATB expression was correlated with increased nodal metastasis (P = 0.036) and advanced clinical stage (P = 0.011) as well as shorter disease-free survival (P = 0.043) and overall survival (P = 0.046). These findings define Twist1 as a major target of lncATB in the induction of the EMT and highlight lncATB as a biomarker in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Proteína 1 Relacionada con Twist/genética , Adulto , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Metástasis Linfática , Células MCF-7 , Ratones , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Proteínas Nucleares/metabolismo , Pronóstico , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factor de Crecimiento Transformador beta/farmacología , Carga Tumoral , Proteína 1 Relacionada con Twist/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
NPJ Breast Cancer ; 4: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109262

RESUMEN

Basal-like breast cancer (BLBC) is an aggressive subtype with a strong tendency to metastasize. Due to the lack of effective chemotherapy, BLBC has a poor prognosis compared with luminal subtype breast cancer. MicroRNA-221 and -222 (miR-221/222) are overexpressed in BLBC and associate with metastasis as well as poor prognosis; however, the mechanisms by which miR-221/222 function as oncomiRs remain unknown. Here, we report that miR-221/222 expression is inversely correlated with Notch3 expression in breast cancer cell lines. Notch3 is known to be overexpressed in luminal breast cancer cells and inhibits epithelial to mesenchymal transition (EMT). We demonstrate that miR-221/222 target Notch3 by binding to its 3' untranslated region and suppressing protein translation. Ectopic expression of miR-221/222 significantly promotes EMT, whereas overexpression of Notch3 intracellular domain attenuates the oncogenic function of miR-221/222, suggesting that miR-221/222 exerts its oncogenic role by negatively regulating Notch3. Taken together, our results elucidated that miR-221/222 promote EMT via targeting Notch3 in breast cancer cell lines suggesting that miR-221/222 can serve as a potential therapeutic target in BLBC.

17.
Oncogenesis ; 7(8): 59, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30100605

RESUMEN

Notch3 and GATA binding protein 3 (GATA-3) have been, individually, shown to maintain luminal phenotype and inhibit epithelial-mesenchymal transition (EMT) in breast cancers. In the present study, we report that Notch3 expression positively correlates with that of GATA-3, and both are associated with estrogen receptor-α (ERα) expression in breast cancer cells. We demonstrate in vitro and in vivo that Notch3 suppressed EMT and breast cancer metastasis by activating GATA-3 transcription. Furthermore, Notch3 knockdown downregulated GATA-3 and promoted EMT; while overexpression of Notch3 intracellular domain upregulated GATA-3 and inhibited EMT, leading to a suppression of metastasis in vivo. Moreover, inhibition or overexpression of GATA-3 partially reversed EMT or mesenchymal-epithelial transition induced by Notch3 alterations. In breast cancer patients, high GATA-3 expression is associated with higher Notch3 expression and lower lymph node metastasis, especially for hormone receptor (HR) positive cancers. Herein, we demonstrate a novel mechanism whereby Notch3 inhibit EMT by transcriptionally upregulating GATA-3 expression, at least in part, leading to the suppression of cancer metastasis in breast cancers. Our findings expand our current knowledge on Notch3 and GATA-3's roles in breast cancer metastasis.

18.
Oncol Lett ; 15(6): 8749-8755, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29805613

RESUMEN

Notch4, a family member of the Notch signaling pathway, has important roles in cellular developmental pathways, including proliferation, differentiation and apoptosis. The present study aimed to investigate the association between Notch4 expression and clinical outcomes with immunohistochemistry. Notch4 was expressed in 55.6% of triple-negative breast cancer (TNBC), 45.8% of Her-2-overexpressing and 25.5% of luminal breast cancer cases, with significantly higher expression occurring in TNBC (P<0.05). Furthermore, Notch4 expression was inversely associated with estrogen receptor (ER) and/or progesterone receptor positivity, and positively associated with larger tumor size, more lymph node involvement, and more advanced tumor node metastasis stage (P<0.05). No significant association was identified regarding age, menopausal status, Her-2 status or distant metastasis. Univariate survival analysis revealed that patients with low Notch4-expressing tumors exhibited a lower relative risk of cancer recurrence compared with patients with high Notch4-expressing tumors. However, in the luminal cohort, high Notch4 expression conferred significantly lower 5-year overall survival (OS) rates compared with Notch4 low-expression groups (P=0.003) but not in TNBC and Her-2-overexpressing patients. In conclusion, Notch4 expression was significantly higher in patients with TNBC and Her-2-overexpressing breast cancer compared with luminal breast cancer patients. Notch4 expression is associated with aggressive clinicopathological and biological phenotypes, and may predict poor prognosis in luminal breast cancer patients.

19.
Clin Breast Cancer ; 18(5): e851-e861, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29510897

RESUMEN

INTRODUCTION: The L1 cell adhesion molecule (L1-CAM) and its soluble form sL1 play a prominent role in invasion and metastasis in several cancers. However, its association with breast cancer is still unclear. PATIENTS AND METHODS: We analyzed L1-CAM expression and serum sL1 levels in cancer and para-carcinoma tissues from 162 consecutive patients with primary invasive breast cancer (PBC) using immunohistochemistry and an enzyme-linked immunosorbent assay, respectively. The serum sL1 levels were also examined in 38 patients with benign breast disease and 36 healthy controls. RESULTS: L1-CAM was expressed more frequently in cancer tissues than in para-carcinoma tissues (24.1% vs. 5.6%; P < .001), and the mean sL1 levels were significantly greater in PBC than in those with benign breast disease and healthy controls (P = .027). Both L1-CAM+ expression and higher mean sL1 levels correlated significantly with larger tumor size, lymph node involvement, higher histologic grade, advanced TNM stage, and shorter disease-free survival for PBC patients. Moreover, higher mean sL1 levels were also significantly associated with estrogen receptor-α-negative expression, human epidermal growth factor receptor 2-positive (HER2+) expression, HER2-enriched and triple-negative molecular subtypes, and L1-CAM+ expression (P < .05). On multivariate analysis, larger tumor size, nodal involvement, HER2+, and higher sL1 levels (≥ 0.7 ng/mL) were independent factors associated with L1-CAM+ expression (P < .05). No association was found between L1-CAM expression or sL1 level with age, gender, histologic type, or expression of progesterone receptor, Ki-67, p53, or vascular endothelial growth factor C (P > .05). CONCLUSION: These results indicate that L1-CAM and sL1 are elevated in PBC and both might affect the prognosis of PBC patients. In addition, sL1 might be a useful marker for screening and diagnosis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Membrana Celular/metabolismo , Citoplasma/metabolismo , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Metástasis Linfática , Persona de Mediana Edad , Molécula L1 de Adhesión de Célula Nerviosa/sangre , Pronóstico
20.
Theranostics ; 7(16): 4041-4056, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29109797

RESUMEN

The luminal A phenotype is the most common breast cancer subtype and is characterized by estrogen receptor α expression (ERα). Identification of the key regulator that governs the luminal phenotype of breast cancer will clarify the pathogenic mechanism and provide novel therapeutic strategies for this subtype of cancer. ERα signaling pathway sustains the epithelial phenotype and inhibits the epithelial-mesenchymal transition (EMT) of breast cancer. In this study, we demonstrate that Notch3 positively associates with ERα in both breast cancer cell lines and human breast cancer tissues. We found that overexpression of Notch3 intra-cellular domain, a Notch3 active form (N3ICD), in ERα negative breast cancer cells re-activated ERα, while knock-down of Notch3 reduced ERα transcript and proteins, with alteration of down-stream genes, suggesting its ability to regulate ERα. Mechanistically, our results show that Notch3 specifically binds to the CSL binding element of the ERα promoter and activates ERα expression. Moreover, Notch3 suppressed EMT, while suppression of Notch3 promoted EMT in cellular assay. Overexpressing N3ICD in triple-negative breast cancer suppressed tumorigenesis and metastasis in vivo. Conversely, depletion of Notch3 in luminal breast cancer promoted metastasis in vivo. Furthermore, Notch3 transcripts were significantly associated with prolonged relapse-free survival in breast cancer, in particular in ERα positive breast cancer patients. Our observations demonstrate that Notch3 governs the luminal phenotype via trans-activating ERα expression in breast cancer. These findings delineate the role of a Notch3/ERα axis in maintaining the luminal phenotype and inhibiting tumorigenesis and metastasis in breast cancer, providing a novel strategy to re-sensitize ERα negative or low-expressing breast cancers to hormone therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor Notch3/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor Notch3/genética , Receptores de Estrógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA