Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 62(4): e0165323, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38445858

RESUMEN

Whole-genome sequencing (WGS) of microbial pathogens recovered from patients with infectious disease facilitates high-resolution strain characterization and molecular epidemiology. However, increasing reliance on culture-independent methods to diagnose infectious diseases has resulted in few isolates available for WGS. Here, we report a novel culture-independent approach to genome characterization of Bordetella pertussis, the causative agent of pertussis and a paradigm for insufficient genomic surveillance due to limited culture of clinical isolates. Sequencing libraries constructed directly from residual pertussis-positive diagnostic nasopharyngeal specimens were hybridized with biotinylated RNA "baits" targeting B. pertussis fragments within complex mixtures that contained high concentrations of host and microbial background DNA. Recovery of B. pertussis genome sequence data was evaluated with mock and pooled negative clinical specimens spiked with reducing concentrations of either purified DNA or inactivated cells. Targeted enrichment increased the yield of B. pertussis sequencing reads up to 90% while simultaneously decreasing host reads to less than 10%. Filtered sequencing reads provided sufficient genome coverage to perform characterization via whole-genome single nucleotide polymorphisms and whole-genome multilocus sequencing typing. Moreover, these data were concordant with sequenced isolates recovered from the same specimens such that phylogenetic reconstructions from either consistently clustered the same putatively linked cases. The optimized protocol is suitable for nasopharyngeal specimens with diagnostic IS481 Ct < 35 and >10 ng DNA. Routine implementation of these methods could strengthen surveillance and study of pertussis resurgence by capturing additional cases with genomic characterization.


Asunto(s)
Bordetella , Tos Ferina , Humanos , Bordetella pertussis/genética , Tos Ferina/diagnóstico , Tos Ferina/epidemiología , Filogenia , Genómica , ADN
2.
Front Immunol ; 15: 1330864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375482

RESUMEN

The mucosal immunity is crucial for restricting SARS-CoV-2 at its entry site. Intramuscularly applied vaccines against SARS-CoV-2 stimulate high levels of neutralizing Abs in serum, but the impact of these intramuscular vaccinations on features of mucosal immunity is less clear. Here, we analyzed kinetic and functional properties of anti-SARS-CoV-2 Abs in the saliva after vaccination with BNT162b2. We analyzed a total of 24 healthy donors longitudinally for up to 16 months. We found that specific IgG appeared in the saliva after the second vaccination, declined thereafter and reappeared after the third vaccination. Adjusting serum and saliva for the same IgG concentration revealed a strong correlation between the reactivity in these two compartments. Reactivity to VoCs correlated strongly as seen by ELISAs against RBD variants and by live-virus neutralizing assays against replication-competent viruses. For further functional analysis, we purified IgG and IgA from serum and saliva. In vaccinated donors we found neutralizing activity towards authentic virus in the IgG, but not in the IgA fraction of the saliva. In contrast, IgA with neutralizing activity appeared in the saliva only after breakthrough infection. In serum, we found neutralizing activity in both the IgA and IgG fractions. Together, we show that intramuscular mRNA vaccination transiently induces a mucosal immunity that is mediated by IgG and thus differs from the mucosal immunity after infection. Waning of specific mucosal IgG might be linked to susceptibility for breakthrough infection.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Infección Irruptiva , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Saliva , Vacunación , Inmunoglobulina A , Inmunoglobulina G
3.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117675

RESUMEN

Pertussis remains a public health concern in South Africa, with an increase in reported cases and outbreaks in recent years. Whole genome sequencing was performed on 32 Bordetella pertussis isolates sourced from three different surveillance programmes in South Africa between 2015 and 2019. Genome sequences were characterized using multilocus sequence typing, vaccine antigen genes (ptxP, ptxA, ptxB, prn and fimH) and overall genome structure. All isolates were sequence type 2 and harboured the pertussis toxin promoter allele ptxP3. The dominant genotype was ptxP3-ptxA1-ptxB2-prn2-fimH2 (31/32, 96.9 %), with no pertactin-deficient or other mutations in vaccine antigen genes identified. Amongst 21 isolates yielding closed genome assemblies, eight distinct genome structures were detected, with 61.9 % (13/21) of the isolates exhibiting three predominant structures. Increases in case numbers are probably not due to evolutionary changes in the genome but possibly due to other factors such as the cyclical nature of B. pertussis disease, waning immunity due to the use of acellular vaccines and/or population immunity gaps.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Bordetella pertussis/genética , Tos Ferina/epidemiología , Sudáfrica/epidemiología , Vacuna contra la Tos Ferina , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA