Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857395

RESUMEN

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Asunto(s)
Diferenciación Celular , Fagocitos , Humanos , Fagocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia/genética , Leucemia/patología , Leucemia/metabolismo , Ingeniería de Proteínas/métodos , Fagocitosis
2.
Dtsch Med Wochenschr ; 149(11): 621-629, 2024 May.
Artículo en Alemán | MEDLINE | ID: mdl-38749438

RESUMEN

Advances in the understanding of the biology of malignant lymphoma has facilitated the development of numerous molecularly targeted therapies. The incorporation of these precision therapeutics has produced more effective and often less-toxic treatment regimens leading to a significant improvement of treatment outcomes for individuals with lymphoid malignancies.In relapsed diseases, molecularly targeted therapeutic approaches have demonstrated superior outcomes compared to conventional chemotherapy, leading to a growing number of patients being treated entirely chemotherapy-free. This review outlines the current landscape of targeted therapies for both B-cell (B-NHL) and T-cell non-Hodgkin lymphomas (T-NHL) and provides an overview of targeted agents currently approved for the treatment of malignant lymphoma.


Asunto(s)
Terapia Molecular Dirigida , Humanos , Antineoplásicos/uso terapéutico , Linfoma/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico
3.
Dtsch Med Wochenschr ; 149(11): 601, 2024 May.
Artículo en Alemán | MEDLINE | ID: mdl-38749435
4.
Leukemia ; 38(6): 1307-1314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678093

RESUMEN

The therapy of relapsed or refractory (r/r) mantle cell lymphoma (MCL) patients remains a major clinical challenge to date. We conducted a randomized, open-label, parallel-group phase-III trial hypothesizing superior efficacy of rituximab, high-dose cytarabine and dexamethasone with bortezomib (R-HAD + B) versus without (R-HAD) in r/r MCL ineligible for or relapsed after autologous stem cell transplant (ASCT). Primary endpoint was time to treatment failure (TTF), secondary endpoints included response rates, progression free survival, overall survival, and safety. In total, 128 of 175 planned patients were randomized to R-HAD + B (n = 64) or R-HAD (n = 64). Median TTF was 12 vs. 2.6 months (p = 0.045, MIPI-adjusted HR 0.69; 95%CI 0.47-1.02). Overall and complete response rates were 63 vs. 45% (p = 0.049) and 42 vs. 19% (p = 0.0062). A significant treatment effect was seen in the subgroup of patients >65 years (aHR 0.48, 0.29-0.79) and without previous ASCT (aHR 0.52, 0.28-0.96). Toxicity was mostly hematological and attributable to the chemotherapeutic backbone. Grade ≥3 leukocytopenia and lymphocytopenia were more common in R-HAD + B without differences in severe infections between both arms. Bortezomib in combination with chemotherapy can be effective in r/r MCL and should be evaluated further as a therapeutic option, especially if therapy with BTK inhibitors is not an option. Trial registration: NCT01449344.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib , Citarabina , Dexametasona , Linfoma de Células del Manto , Recurrencia Local de Neoplasia , Rituximab , Humanos , Bortezomib/administración & dosificación , Bortezomib/uso terapéutico , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Femenino , Masculino , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Dexametasona/efectos adversos , Anciano , Persona de Mediana Edad , Citarabina/administración & dosificación , Citarabina/uso terapéutico , Rituximab/administración & dosificación , Rituximab/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Adulto , Resistencia a Antineoplásicos , Tasa de Supervivencia , Anciano de 80 o más Años , Estudios de Seguimiento
5.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570506

RESUMEN

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Asunto(s)
Linfoma de Células B Grandes Difuso , Animales , Ratones , Linfocitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Mutación , Microambiente Tumoral/genética
6.
Nat Cell Biol ; 26(3): 478-489, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379051

RESUMEN

The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.


Asunto(s)
Linfoma de Células B de la Zona Marginal , Linfocitos T , Humanos , Linfocitos T/patología , Linfocitos B/patología , Linfoma de Células B de la Zona Marginal/patología , Factor de Crecimiento Transformador beta , Microambiente Tumoral
7.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164819

RESUMEN

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Trasplante de Células Madre Hematopoyéticas , Linfoma , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Estudios Retrospectivos , Trasplante Autólogo , Linfoma/terapia , Linfoma/tratamiento farmacológico
8.
Blood Adv ; 7(18): 5258-5271, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37561599

RESUMEN

Follicular lymphoma (FL) is a neoplasm derived from germinal center B cells, composed of centrocytes and centroblasts, with at least a focal follicular growth pattern. The t(14;18) translocation together with epigenetic deregulation through recurrent genetic alterations are now recognized as the hallmark of FL. Nevertheless, FL is a heterogeneous disease, clinically, morphologically, and biologically. The existence of FL lacking the t(14;18) chromosomal alteration highlights the complex pathogenesis of FL, and indicates that there are alternative pathogenetic mechanisms that can induce a neoplasm with follicular center B-cell phenotype. Based on their clinical presentation, t(14;18)-negative FLs can be divided into 3 broad groups: nodal presentation, extranodal presentation, and those affecting predominantly children and young adults. Recent studies have shed some light into the genetic alterations of t(14;18)-negative FL. Within the group of t(14;18)-negative FL with nodal presentation, cases with STAT6 mutations are increasingly recognized as a distinctive molecular subgroup, often cooccurring with CREBBP and/or TNFRSF14 mutations. FL with BCL6 rearrangement shows clinicopathological similarities to its t(14;18)-positive counterpart. In contrast, t(14;18)-negative FL in extranodal sites is characterized mainly by TNFRSF14 mutations in the absence of chromatin modifying gene mutations. FL in children have a unique molecular landscape when compared with those in adults. Pediatric-type FL (PTFL) is characterized by MAP2K1, TNFRSF14, and/or IRF8 mutations, whereas large B-cell lymphoma with IRF4 rearrangement is now recognized as a distinct entity, different from PTFL. Ultimately, a better understanding of FL biology and heterogeneity should help to understand the clinical differences and help guide patient management and treatment decisions.


Asunto(s)
Linfoma Folicular , Niño , Adulto Joven , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Translocación Genética , Mutación , Linfocitos B/patología , Centro Germinal/patología
9.
Leukemia ; 37(10): 2058-2065, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563306

RESUMEN

Knowledge on the pathogenesis of FL is mainly based on data derived from advanced/systemic stages of FL (sFL) and only small cohorts of localized FL (lFL) have been characterized intensively so far. Comprehensive analysis with profiling of somatic copy number alterations (SCNA) and whole exome sequencing (WES) was performed in 147 lFL and 122 sFL. Putative targets were analyzed for gene and protein expression. Overall, lFL and sFL, as well as BCL2 translocation-positive (BCL2+) and -negative (BCL2-) FL showed overlapping features in SCNA and mutational profiles. Significant differences between lFL and sFL, however, were detected for SCNA frequencies, e.g., in 18q-gains (14% lFL vs. 36% sFL; p = 0.0003). Although rare in lFL, gains in 18q21 were associated with inferior progression-free survival (PFS). The mutational landscape of lFL and sFL included typical genetic lesions. However, ARID1A mutations were significantly more often detected in sFL (29%) compared to lFL (6%, p = 0.0001). In BCL2 + FL mutations in KMT2D, BCL2, ABL2, IGLL5 and ARID1A were enriched, while STAT6 mutations more frequently occurred in BCL2- FL. Although the landscape of lFL and sFL showed overlapping features, molecular profiling revealed novel insights and identified gains in 18q21 as prognostic marker in lFL.


Asunto(s)
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Translocación Genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Mutación , Hibridación Fluorescente in Situ
10.
Infection ; 51(1): 231-238, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36195695

RESUMEN

PURPOSE: Following the emergency use authorization of BNT162b2 by the Food and Drug administration (FDA) in early December 2020, mRNA- and vector-based vaccines became an important means of reducing the spread and mortality of the COVID-19 pandemic. The European Medicines Agency labelled immune thrombocytopenia (ITP) as a rare adverse reaction of unknown frequency after vector-, but not mRNA-vaccination. Here, we report on the long-term outcome of 6 patients who were diagnosed with de-novo, vaccine-associated ITP (VA-ITP), and on the outcome of subsequent SARS-CoV-2 re-vaccinations. METHODS: Patients were included after presenting to our emergency department. Therapy was applied according to ITP guidelines. Follow-up data were obtained from outpatient departments. Both mRNA- or vector-based vaccines were each used in 3 cases, respectively. RESULTS: In all patients, the onset of symptoms occurred after the 1st dose of vaccine was applied. 5 patients required treatment, 3 of them 2nd line therapy. All patients showed a complete response eventually. After up to 359 days of follow-up, 2 patients were still under 2nd line therapy with thrombopoietin receptor agonists. 5 patients have been re-vaccinated with up to 3 consecutive doses of SARS-CoV-2 vaccines, 4 of them showing stable platelet counts hereafter. CONCLUSION: Thrombocytopenia after COVID-19 vaccination should trigger a diagnostic workup to exclude vaccine-induced immune thrombotic thrombocytopenia (VITT) and, if confirmed, VA-ITP should be treated according to current ITP guidelines. Re-vaccination of patients seems feasible under close monitoring of blood counts and using a vaccine that differs from the one triggering the initial episode of VA-ITP.


Asunto(s)
COVID-19 , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/etiología , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Vacunación/efectos adversos , ARN Mensajero
11.
Front Immunol ; 13: 929339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389667

RESUMEN

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Asunto(s)
Antígeno CD47 , Leucemia Linfocítica Crónica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico , Rituximab/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Línea Celular Tumoral , Fagocitosis , Macrófagos , Anticuerpos/metabolismo , Antígenos CD/metabolismo
12.
Nat Commun ; 13(1): 5586, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151076

RESUMEN

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Asunto(s)
COVID-19 , Linfoma , Vacunas , Linfocitos T CD8-positivos , COVID-19/terapia , Epítopos de Linfocito T/genética , Humanos , Inmunización Pasiva , Mutación , Nucleoproteínas/genética , Péptidos/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
13.
Blood ; 140(10): 1104-1118, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878001

RESUMEN

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD19 , Antineoplásicos/uso terapéutico , Humanos , Inmunoterapia/métodos , Linfoma de Células B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Linfocitos T
14.
Leukemia ; 36(9): 2281-2292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35851155

RESUMEN

The variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of tumor cells and complex interactions within the tumor microenvironment (TME). IL-4 producing follicular helper T cells (TFH) are critical components of the FL TME. Binding of IL-4 to IL-4R on FL cells activates JAK/STAT signaling. We identified STAT6 mutations (STAT6MUT) in 13% of FL (N = 33/258), all clustered within the DNA binding domain. Gene expression data and immunohistochemistry showed upregulation of IL-4/STAT6 target genes in STAT6MUT FL, including CCL17, CCL22, and FCER2 (CD23). Functionally, STAT6MUT was gain-of-function by serial replating phenotype in pre-B CFU assays. Expression of STAT6MUT enhanced IL-4 induced FCER2/CD23, CCL17 and CCL22 expression and was associated with nuclear accumulation of pSTAT6. RNA sequencing identified PARP14 -a transcriptional switch and co-activator of STAT6- among the top differentially upregulated genes in IL-4 stimulated STAT6MUT lymphoma cells and in STAT6MUT primary FL cells. Quantitative chromatin immunoprecipitation (qChIP) demonstrated binding of STAT6MUT but not STAT6WT to the PARP14 promotor. Reporter assays showed increased IL-4 induced transactivation activity of STAT6MUT at the PARP14 promotor, suggesting a self-reinforcing regulatory circuit. Knock-down of PARP14 or PARP-inhibition abrogated the STAT6MUT gain-of-function phenotype. Thus, our results identify PARP14 as a novel therapeutic target in STAT6MUT FL.


Asunto(s)
Linfoma de Células B , Linfoma Folicular , Humanos , Inmunohistoquímica , Interleucina-4 , Poli(ADP-Ribosa) Polimerasas , Factor de Transcripción STAT6 , Activación Transcripcional , Microambiente Tumoral
15.
Br J Haematol ; 196(6): 1381-1387, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34967008

RESUMEN

Relapsed follicular lymphoma (FL) can arise from common progenitor cells (CPCs). Conceptually, CPC-defining mutations are somatic alterations shared by the initial and relapsed tumours, mostly B-cell leukaemia/lymphoma 2 (BCL2)/immunoglobulin heavy locus (IGH) translocations and other recurrent gene mutations. Through complementary approaches for highly sensitive mutation detection, we do not find CPC-defining mutations in highly purified BCL2/IGH-negative haematopoietic progenitor cells in clinical remission samples from three patients with relapsed FL. Instead, we find cells harbouring the same BCL2/IGH translocation but lacking CREB binding protein (CREBBP), lysine methyltransferase 2D (KMT2D) and other recurrent gene mutations. Thus, (i) the BCL2/IGH translocation can precede CPC-defining mutations in human FL, and (ii) BCL2/IGH-translocated cells can persist in clinical remission.


Asunto(s)
Linfoma de Células B , Linfoma Folicular , Células Madre Hematopoyéticas/metabolismo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma de Células B/genética , Linfoma Folicular/patología , Mutación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Translocación Genética
16.
Hemasphere ; 5(7): e603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34235400

RESUMEN

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

17.
Blood ; 138(24): 2499-2513, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34166502

RESUMEN

Hematotoxicity represents a frequent chimeric antigen receptor (CAR) T-cell-related adverse event and remains poorly understood. In this multicenter analysis, we studied patterns of hematopoietic reconstitution and evaluated potential predictive markers in 258 patients receiving axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) for relapsed/refractory large B-cell lymphoma. We observed profound (absolute neutrophil count [ANC] <100 cells per µL) neutropenia in 72% of patients and prolonged (21 days or longer) neutropenia in 64% of patients. The median duration of severe neutropenia (ANC < 500 cells per µL) was 9 days. We aimed to identify predictive biomarkers of hematotoxicity using the duration of severe neutropenia until day +60 as the primary end point. In the training cohort (n = 58), we observed a significant correlation with baseline thrombocytopenia (r = -0.43; P = .001) and hyperferritinemia (r = 0.54; P < .0001) on univariate and multivariate analysis. Incidence and severity of cytokine-release syndrome, immune effector cell-associated neurotoxicity syndrome, and peak cytokine levels were not associated with the primary end point. We created the CAR-HEMATOTOX model, which included markers associated with hematopoietic reserve (eg, platelet count, hemoglobin, and ANC) and baseline inflammation (eg, C-reactive protein and ferritin). This model was validated in independent cohorts, one from Europe (n = 91) and one from the United States (n = 109) and discriminated patients with severe neutropenia ≥14 days to <14 days (pooled validation: area under the curve, 0.89; sensitivity, 89%; specificity, 68%). A high CAR-HEMATOTOX score resulted in a longer duration of neutropenia (12 vs 5.5 days; P < .001) and a higher incidence of severe thrombocytopenia (87% vs 34%; P < .001) and anemia (96% vs 40%; P < .001). The score implicates bone marrow reserve and inflammation prior to CAR T-cell therapy as key features associated with delayed cytopenia and will be useful for risk-adapted management of hematotoxicity.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Productos Biológicos/efectos adversos , Enfermedades Hematológicas/etiología , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/terapia , Receptores de Antígenos de Linfocitos T , Adulto , Anciano , Anciano de 80 o más Años , Anemia/etiología , Antineoplásicos Inmunológicos/uso terapéutico , Productos Biológicos/uso terapéutico , Síndrome de Liberación de Citoquinas/etiología , Humanos , Incidencia , Persona de Mediana Edad , Recurrencia Local de Neoplasia/terapia , Síndromes de Neurotoxicidad/etiología , Neutropenia/etiología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Estudios Retrospectivos , Trombocitopenia/etiología , Adulto Joven
18.
Sci Rep ; 11(1): 5838, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712646

RESUMEN

Chemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación con Pérdida de Función/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Recurrencia Local de Neoplasia/patología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
BMC Infect Dis ; 21(1): 121, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509115

RESUMEN

BACKGROUND: Prolonged myelosuppression following CD19-directed CAR T-cell transfusion represents an important, yet underreported, adverse event. The resulting neutropenia and multifactorial immunosuppression can facilitate severe infectious complications. CASE PRESENTATION: We describe the clinical course of a 59-year-old patient with relapsed/refractory DLBCL who received Axicabtagene-Ciloleucel (Axi-cel). The patient developed ASTCT grade I CRS and grade IV ICANS, necessitating admission to the neurological ICU and prolonged application of high-dose corticosteroids and other immunosuppressive agents. Importantly, neutropenia was profound (ANC < 100/µl), G-CSF-refractory, and prolonged, lasting more than 50 days. The patient developed severe septic shock 3 weeks after CAR transfusion while receiving anti-fungal prophylaxis with micafungin. His clinical status stabilized with broad anti-infective treatment and intensive supportive measures. An autologous stem cell backup was employed on day 46 to support hematopoietic recovery. Although the counts of the patient eventually started to recover, he developed an invasive pulmonary aspergillosis, which ultimately lead to respiratory failure and death. Postmortem examination revealed signs of Candida glabrata pancolitis. CONCLUSIONS: This case highlights the increased risk for fatal infectious complications in patients who present with profound and prolonged cytopenia after CAR T-cell therapy. We describe a rare case of C. glabrata pancolitis associated with multifactorial immunosuppression. Although our patient succumbed to a fatal fungal infection, autologous stem cell boost was able to spur hematopoiesis and may represent an important therapeutic strategy for DLBCL patients with CAR T-cell associated bone marrow aplasia who have underwent prior stem cell harvest.


Asunto(s)
Anemia Aplásica/etiología , Antígenos CD19/uso terapéutico , Aspergillus fumigatus/aislamiento & purificación , Candida glabrata/aislamiento & purificación , Inmunoterapia Adoptiva/efectos adversos , Infecciones Fúngicas Invasoras/etiología , Anemia Aplásica/terapia , Antígenos CD19/efectos adversos , Productos Biológicos , Resultado Fatal , Humanos , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/terapia , Linfoma de Células B Grandes Difuso/terapia , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA