RESUMEN
Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.
Asunto(s)
Proteínas de Transporte de Membrana , Xenobióticos , Animales , Humanos , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Interacciones Farmacológicas , Proteínas Transportadoras de Solutos/metabolismo , Mamíferos/metabolismoRESUMEN
The success of genome-wide association studies has paralleled the development of efficient genotyping technologies. We describe the development of a next-generation microarray based on the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype individuals of European ancestry from the Kaiser Permanente Research Program on Genes, Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using an approach based on imputation and cross validation. Preliminary results for the first 80,301 saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with sample success rates above 94% and over 98% of successful samples having SNP call rates exceeding 98%. At steady state, we have produced 462 million genotypes per week for each Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale genome-wide association studies.
Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Ensayos Analíticos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , HumanosRESUMEN
BACKGROUND: Proventricular dilatation disease (PDD) is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease. RESULTS: Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8) and none of the controls (0/8). Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV) for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7) compared to controls (0%, n = 14) (P = 0.01; Fisher's Exact Test). Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups. CONCLUSION: These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD.