Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Avian Pathol ; : 1-7, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38836447

RESUMEN

Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-µm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.

2.
One Health ; 18: 100748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38774301

RESUMEN

The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.

3.
Front Immunol ; 15: 1392456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779673

RESUMEN

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Asunto(s)
Proteínas Bacterianas , Animales , Ratones , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Streptococcus suis/inmunología , Streptococcus suis/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Humanos , Vacunas Bacterianas/inmunología
4.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38140173

RESUMEN

Novel goose parvovirus (NGPV), a genetic variant of goose parvovirus, has been spreading throughout China since 2015 and mainly infects ducklings with the symptoms of growth retardation, beak atrophy, and protruding tongue, leading to huge economic losses every year. A safe and effective vaccine is urgently needed to control NGPV infection. In this study, virus-like particles (VLPs) of NPGV were assembled and evaluated for their immunogenicity. The VP2 protein of NGPV was expressed in Spodoptera frugiperda insect cells using baculovirus as vector. The VP2 protein was efficiently expressed in the nucleus of insect cells, and the particles with a circular or hexagonal shape and a diameter of approximately 30 nm, similar to the NGPV virion, were observed using transmission electron microscopy (TEM). The purified particles were confirmed to be composed of VP2 using western blot and TEM, indicating that the VLPs of NGPV were successfully assembled. Furthermore, the immunogenicity of the VLPs of NGPV was evaluated in Cherry Valley ducks. The level of NGPV serum antibodies increased significantly at 1-4 weeks post-immunization. No clinical symptoms or deaths of ducks occurred in all groups after being challenged with NGPV at 4 weeks post-immunization. There was no viral shedding in the immunized group. However, viral shedding was detected at 3-7 days post-challenge in the non-immunized group. Moreover, VLPs can protect ducks from histopathological lesions caused by NGPV and significantly reduce viral load in tissue at 5 days post-challenge. Based on these findings, NGPV VLPs are promising candidates for vaccines against NGPV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA