Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Natl Sci Rev ; 11(9): nwae297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262403
2.
Sci Bull (Beijing) ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39209600

RESUMEN

Electrochemical energy devices serve as a vital link in the mutual conversion between chemical energy and electrical energy. This role positions them to be essential for achieving high-efficiency utilization and advancement of renewable energy. Electrochemical reactions, including anodic and cathodic reactions, play a crucial role in facilitating the connection between two types of charge carriers: electrons circulating within the external circuit and ions transportation within the internal electrolyte, which ensures the completion of the circuit in electrochemical devices. While electrons are uniform, ions come in various types, we herein propose the concept of hybrid electrochemical energy technologies (h-EETs) characterized by the utilization of different ions as charge carriers of anodic and cathodic reactions. Accordingly, this review aims to explore the fundamentals of emerging hybrid electrochemical energy technologies and recent research advancements. We start with the introduction of the concept and foundational aspects of h-EETs, including the proposed definition, the historical background, operational principles, device configurations, and the underlying principles governing these configurations of the h-EETs. We then discuss how the integration of hybrid charge carriers influences the performance of associated h-EETs, to facilitate an insightful understanding on how ions carriers can be beneficial and effectively implemented into electrochemical energy devices. Furthermore, a special emphasis is placed on offering an overview of the research progress in emerging h-EETs over recent years, including hybrid battery capacitors that extend beyond traditional hybrid supercapacitors, as well as exploration into hybrid fuel cells and hybrid electrolytic synthesis. Finally, we highlight the major challenges and provide anticipatory insights into the future perspectives of developing high-performance h-EETs devices.

3.
Angew Chem Int Ed Engl ; : e202412410, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087982

RESUMEN

The electrochemical conversion of CO2 into valuable chemicals using renewable electricity shows significant promise for achieving carbon neutrality and providing alternative energy storage solutions. However, its practical application still faces significant challenges, including high energy consumption, poor selectivity, and limited stability. Here, we propose a hybrid acid/alkali electrolyzer that couples the acidic CO2 reduction reaction (CO2RR) at the cathode with alkaline methanol oxidation reaction (MOR) at the anode. This dual electro-synthesis cell is implemented by developing Bi nanosheets as cathode catalysts and oxide-decorated Cu2Se nanoflowers as anode catalysts, enabling high-efficiency electron utilization for formate production with over 180% coulombic efficiency and more than 90% selectivity for both CO2RR and MOR conversion. The hybrid acid/alkali CO2RR-MOR cell also demonstrates long-term stability exceeding 100 hours of continuous operation, delivers a formate partial current density of 130 mA cm-2 at a voltage of only 2.1 V, and significantly reduces electricity consumption compared to the traditional CO2 electrolysis system. This study illuminates an innovative electron-efficiency and energy-saving techniques for CO2 electrolysis, as well as the development of highly efficient electrocatalysts.

4.
Angew Chem Int Ed Engl ; 63(31): e202407079, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757230

RESUMEN

In both the manufacturing and chemical industries, benzoquinone is a crucial chemical product. A perfect and economical method for making benzoquinone is the electrochemical oxidation of phenol, thanks to the traditional thermal catalytic oxidation of phenol process requires high cost, serious pollution and harsh reaction conditions. Here, a unique heterostructure electrocatalyst on nickel foam (NF) consisting of nickel sulfide and nickel oxide (Ni9S8-Ni15O16/NF) was produced, and this catalyst exhibited a low overpotential (1.35 V vs. RHE) and prominent selectivity (99 %) for electrochemical phenol oxidation reaction (EOP). Ni9S8-Ni15O16/NF is beneficial for lowering the reaction energy barrier and boosting reactivity in the EOP process according to density functional theory (DFT) calculations. Additionally, an alkali/acid hybrid flow cell was successfully established by connecting Ni9S8-Ni15O16/NF and commercial RuIr/Ti in series to catalyze phenol oxidation in an alkaline medium and hydrogen evolution in an acid medium, respectively. A cell voltage of only 0.60 V was applied to produce a current density of 10 mA cm-2. Meanwhile, the system continued to operate at 0.90 V for 12 days, showing remarkable long-term stability. The unique configuration of the acid-base hybrid flow cell electrolyzer provides valuable guidance for the efficient and environmentally friendly electrooxidation of phenol to benzoquinone.

5.
J Colloid Interface Sci ; 670: 191-203, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761572

RESUMEN

Transition metal chalcogenides (TMCs) hold great potential for sodium-ion batteries (SIBs) owing to their multielectron conversion reactions, yet face challenges of poor intrinsic conductivity, sluggish diffusion kinetics, severe phase transitions, and structural collapse during cycling. Herein, a self-templating strategy is proposed for the synthesis of a class of metal cobalt-doped NiSe nanoparticles confined within three-dimensional (3D) N-doped macroporous carbon matrix nanohybrids (Co-NiSe/NMC). The cation defect engineering within the developed Co-NiSe and 3D N-doped carbon plays a crucial role in enhancing intrinsic conductivity, reinforcing structural stability, and reducing the barrier to sodium ion diffusion, which are verified by a series of electrochemical kinetic analyses and density functional theory calculations. Significantly, such cation defect engineering not only reduces overpotential but also accelerates conversion reaction kinetics, ensuring both exceptional high-rate capability and extended durability. Consequently, the optimally engineered Co-NiSe/NMC demonstrates a remarkable rate performance, delivering 390 mAh g-1 at 10 A g-1. Moreover, it exhibits an unprecedented lifespan, maintaining a remarkable capacity of 403 mAh g-1 after 1400 cycles and 318 mAh g-1 after 4000 cycles, even at high rates of 1.0 and 2.0 A g-1, respectively. This work marks a substantial advancement in achieving both high performance and prolonged cycle life in sodium-ion batteries.

6.
Adv Sci (Weinh) ; 11(23): e2402343, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572506

RESUMEN

Rechargeable Zn-air batteries (ZABs) are considered highly competitive technologies for meeting the energy demands of the next generation, whether for energy storage or portable power. However, their practical application is hindered by critical challenges such as low voltage, CO2 poisoning at the cathode, low power density, and poor charging efficiency Herein, a rechargeable hybrid alkali/acid Zn-air battery (h-RZAB) that effectively separates the discharge process in an acidic environment from the charging process in an alkaline environment, utilizing oxygen reduction reaction (ORR) and glycerol oxidation reaction (GOR) respectively is reported. Compared to previously reported ZABs, this proof-of-concept device demonstrates impressive performance, exhibiting a high power density of 562.7 mW cm-2 and a high operating voltage during discharging. Moreover, the battery requires a significantly reduced charging voltage due to the concurrent utilization of biomass-derived glycerol, resulting in practical and cost-effective advantages. The decoupled system offers great flexibility for intermittently generated renewable power sources and presents cost advantages over traditional ZABs. As a result, this technology holds significant promise in opening avenues for the future development of renewable energy-compatible electrochemical devices.

7.
Nanoscale ; 16(16): 8119-8131, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38567547

RESUMEN

Electrocatalytic CO2 reduction (CO2RR) has emerged as a promising approach for converting CO2 into valuable chemicals and fuels to achieve a sustainable carbon cycle. However, the development of efficient electrocatalysts with high current densities and superior product selectivity remains a significant challenge. In this study, we present the synthesis of a porous nitrogen-doped carbon nanosheet loaded with heterostructured Ni/Ni3ZnC0.7 nanoparticles through a facile hydrothermal-calcination method (Ni/Ni3ZnC0.7-NC). Remarkably, the Ni/Ni3ZnC0.7-NC catalyst exhibits outstanding performance towards CO2RR in an H-cell, demonstrating a high CO faradaic efficiency of 92.47% and a current density (jCO) of 15.77 mA cm-2 at 0.87 V vs. RHE. To further explore its potential industrial applications, we constructed a flow cell and a rechargeable Zn-CO2 flow cell utilizing the Ni/Ni3ZnC0.7-NC catalyst as the cathode. Impressively, not only does the Ni/Ni3ZnC0.7-NC catalyst achieve an industrial high current density of 254 mA cm-2 at a voltage of -1.19 V vs. RHE in the flow cell, but it also exhibits a maximum power density of 4.2 mW cm-2 at 22 mA cm-2 in the Zn-CO2 flow cell, while maintaining excellent rechargeability. Density functional theory (DFT) calculations indicate that Ni/Ni3ZnC0.7-NC possesses more spontaneous reaction pathways for CO2 reduction to CO, owing to its heterogeneous structure in contrast to Ni3ZnC0.7-NC and Ni-NC. Consequently, Ni/Ni3ZnC0.7-NC demonstrates accelerated CO2RR reaction kinetics, resulting in improved catalytic activity and selectivity for CO2RR.

9.
Small ; 20(31): e2310694, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38545993

RESUMEN

The exploration of electrocatalysts toward oxygen reduction reaction (ORR) is pivotal in the development of diverse batteries and fuel cells that rely on ORR. Here, a FeCo-N-C electrocatalyst (FeCo-HNC) featuring with atomically dispersed dual metal sites (Fe-Co) and hollow cubic structure is reported, which exhibits high activity for electrocatalysis of ORR in alkaline electrolyte, as evidenced by a half-wave potential of 0.907 V, outperforming that of the commercial Pt/C catalyst. The practicality of such FeCo-HNC catalyst is demonstrated by integrating it as the cathode catalyst into an alkaline aluminum-air battery (AAB) paring with an aluminum plate serving as the anode. This AAB demonstrates an unprecedented power density of 804 mW cm-2 in ambient air and an impressive 1200 mW cm-2 in an oxygen-rich environment. These results not only establish a new benchmark but also set a groundbreaking record for the highest power density among all AABs reported to date. Moreover, they stand shoulder to shoulder with state-of-the-art H2-O2 fuel cells. This AAB exhibits robust stability with continuous operation for an impressive 200 h. This groundbreaking achievement underscores the immense potential and forward strides that the present work brings to the field.

10.
Angew Chem Int Ed Engl ; 63(11): e202320183, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38265307

RESUMEN

Alloying-type antimony (Sb) with high theoretical capacity is a promising anode candidate for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Given the larger radius of Na+ (1.02 Å) than Li+ (0.76 Å), it was generally believed that the Sb anode would experience even worse capacity degradation in SIBs due to more substantial volumetric variations during cycling when compared to LIBs. However, the Sb anode in SIBs unexpectedly exhibited both better electrochemical and structural stability than in LIBs, and the mechanistic reasons that underlie this performance discrepancy remain undiscovered. Here, using substantial in situ transmission electron microscopy, X-ray diffraction, and Raman techniques complemented by theoretical simulations, we explicitly reveal that compared to the lithiation/delithiation process, sodiation/desodiation process of Sb anode displays a previously unexplored two-stage alloying/dealloying mechanism with polycrystalline and amorphous phases as the intermediates featuring improved resilience to mechanical damage, contributing to superior cycling stability in SIBs. Additionally, the better mechanical properties and weaker atomic interaction of Na-Sb alloys than Li-Sb alloys favor enabling mitigated mechanical stress, accounting for enhanced structural stability as unveiled by theoretical simulations. Our finding delineates the mechanistic origins of enhanced cycling stability of Sb anode in SIBs with potential implications for other large-volume-change electrode materials.

11.
Small ; 20(8): e2305410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840346

RESUMEN

The conversion of CO2 into valuable solar fuels via photocatalysis is a promising strategy for addressing energy shortages and environmental crises. Here, novel In2 O3 @Co2 VO4 hierarchical heterostructures are fabricated by in situ growing Co2 VO4 nanorods onto In2 O3 nanofibers. First-principle calculations and X-ray photoelectron spectroscopy (XPS) measurements reveal the electron transfer between In2 O3 and Co2 VO4 driven by the difference in work functions, thus creating an interfacial electric field and bending the bands at the interfaces. In this case, the photogenerated electrons in In2 O3 transport to Co2 VO4 and recombine with its holes, indicating the formation of In2 O3 @Co2 VO4 S-scheme heterojunctions and resulting in effective separation of charge carriers, as confirmed by in situ irradiation XPS. The unique S-scheme mechanism, along with the enhanced optical absorption and the lower Gibbs free energy change for the production of * CHO, significantly contributes to the efficient CO2 photoreduction into CO and CH4 in the absence of any molecule cocatalyst or scavenger. Density functional theory simulation and in situ diffuse reflectance infrared Fourier transform spectroscopy are employed to elucidate the reaction mechanism in detail.

12.
Small ; 20(7): e2303300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840438

RESUMEN

Combining the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) within an integrated electrolytic system may offer the advantages of enhanced kinetics of the anode, reduced energy consumption, and the production of high-purity hydrogen. Herein, it is reported the construction of Ni─MoN nanorod arrays supported on a nickel foam substrate (Ni─MoN/NF) as a bifunctional electrocatalyst for electrocatalytic hydrogen production and selective methanol oxidation to formate. Remarkably, The optimal Ni─MoN/NF catalyst displays exceptional HER performance with an overpotential of only 49 mV to attain 10 mA cm-2 in acid, and exhibits a high activity for MOR to achieve 100 mA cm-2 at 1.48 V in alkali. A hybrid acid/base electrolytic cell with Ni─MoN/NF electrode as anode and cathode is further developed for an integrated HER-MOR cell, which only requires a voltage of 0.56 V at 10 mA cm-2 , significantly lower than that of the HER-OER system (0.70 V). The density functional theory studies reveal that the incorporation of Ni effectively modulates the electronic structure of MoN, thereby resulting in enhanced catalytic activity. The unique combination of high electrocatalytic activity and excellent stability make the Ni─MoN/NF catalyst a promising candidate for practical applications in electrocatalytic hydrogen production and methanol oxidation.

13.
Angew Chem Int Ed Engl ; 63(4): e202317313, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38055203

RESUMEN

Sodium borohydride (NaBH4 ) has earned recognition as a promising hydrogen carrier, attributed to its exceptional hydrogen storage capacity, boasting a high theoretical storage capacity of 10.8 wt %. Nonetheless, the utilization of traditional pyrolysis and hydrolysis methods still presents a formidable challenge in achieving controlled hydrogen generation especially under ambient conditions. In this work, we report an innovative electrochemical strategy for production H2 by coupling NaBH4 electrooxidation reaction (BOR) at anode in alkaline media with hydrogen evolution reaction (HER) at cathode in acidic media. To implement this, we have developed a bifunctional electrocatalyst denoted as Pd-Mo2 C@CNTs, wherein Pd nanoparticles are grown in situ on Mo2 C embedded within N-doped carbon nanotubes. This electrocatalyst demonstrates exceptional performance in catalyzing both alkaline BOR and acidic HER. We have developed a hybrid acid/alkali cell, utilizing Pd/Mo2 C@CNTs as the anode and cathode electrocatalysts. This configuration showcases remarkable capabilities for self-sustained, precise, and uninterrupted indirect release of H2 stored in NaBH4 , even at high current densities of 100 mA cm-2 with a Faraday efficiency approaching 100 %. Additionally, this electrochemical device exhibits significant promise as a fuel cell, with the ability to deliver a maximum power density of 20 mW cm-2 .

14.
J Colloid Interface Sci ; 650(Pt A): 275-283, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413861

RESUMEN

The construction of heteroatom-doped metal-free carbon catalysts with bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired for Zn-air batteries, but remains a great challenge owing to the sluggish kinetics of OER and ORR. Herein, a self-sacrificing template engineering strategy was employed to fabricate fluorine (F), nitrogen (N) co-doped porous carbon (F-NPC) catalyst by direct pyrolysis of F, N containing covalent organic framework (F-COF). The predesigned F and N elements were integrated into the skeletons of COF precursor, thus achieving uniformly distributed heteroatom active sites. The introduction of F is beneficial for the formation of edge-defects, contributing to the enhancement of the electrocatalytic activity. Attributing to the porous feature, abundant defect sites induced by F doping, as well as the strong synergistic effect between N and F atoms to afford a high intrinsic catalytic activity, the resulting F-NPC catalyst exhibits excellent bifunctional catalytic activities for both ORR and OER in alkaline mediums. Furthermore, the assembled Zn-air battery with F-NPC catalyst shows a high peak power density of 206.3 mW cm-2 and great stability, surpassing the commercial Pt/C + RuO2 catalysts.

15.
Angew Chem Int Ed Engl ; 62(34): e202306491, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37318066

RESUMEN

Electrosynthesis of H2 O2 has great potential for directly converting O2 into disinfectant, yet it is still a big challenge to develop effective electrocatalysts for medical-level H2 O2 production. Herein, we report the design and fabrication of electrocatalysts with biomimetic active centers, consisting of single atomic iron asymmetrically coordinated with both nitrogen and sulfur, dispersed on hierarchically porous carbon (FeSA -NS/C). The newly-developed FeSA -NS/C catalyst exhibited a high catalytic activity and selectivity for oxygen reduction to produce H2 O2 at a high current of 100 mA cm-2 with a record high H2 O2 selectivity of 90 %. An accumulated H2 O2 concentration of 5.8 wt.% is obtained for the electrocatalysis process, which is sufficient for medical disinfection. Combined theoretical calculations and experimental characterizations verified the rationally-designed catalytic active center with the atomic Fe site stabilized by three-coordinated nitrogen atoms and one-sulfur atom (Fe-N3 S-C). It was further found that the replacement of one N atom with S atom in the classical Fe-N4 -C active center could induce an asymmetric charge distribution over N atoms surrounding the Fe reactive center to accelerate proton spillover for a rapid formation of the OOH* intermediate, thus speeding up the whole reaction kinetics of oxygen reduction for H2 O2 electrosynthesis.

16.
J Colloid Interface Sci ; 646: 245-253, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196498

RESUMEN

Nickel-based sulfides are considered promising materials for sodium-ion batteries (SIBs) anodes due to their abundant resources and attractive theoretical capacity. However, their application is limited by slow diffusion kinetics and severe volume changes during cycling. Herein, we demonstrate a facile strategy for the synthesis of nitrogen-doped reduced graphene oxide (N-rGO) wrapped Ni3S2 nanocrystals composites (Ni3S2-N-rGO-700 °C) through the cubic NiS2 precursor under high temperature (700 ℃). Benefitting from the variation in crystal phase structure and robust coupling effect between the Ni3S2 nanocrystals and N-rGO matrix, the Ni3S2-N-rGO-700 °C exhibits enhanced conductivity, fast ion diffusion kinetics and outstanding structural stability. As a result, the Ni3S2-N-rGO-700 °C delivers excellent rate capability (345.17 mAh g-1 at a high current density of 5 A g-1) and long-term cyclic stability over 400 cycles at 2 A g-1 with a high reversible capacity of 377 mAh g-1 when evaluated as anodes for SIBs. This study open a promising avenue to realize advanced metal sulfide materials with desirable electrochemical activity and stability for energy storage applications.

18.
Angew Chem Int Ed Engl ; 62(18): e202215584, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840681

RESUMEN

Covalent organic frameworks (COFs), thanks to their adjustable porous structure and abundant build-in functional motifs, have been recently regarded as promising electrode materials for a variety of batteries. There still remain grand opportunities to further utilizing their merits for developing advanced COFs-based batteries. In this paper, we propose a hybrid acid/alkali all-COFs battery by coupling pyrene-4,5,9,10-tetraone based COF cathode with anthraquinone based COF anode. In such a hybrid acid/alkali all-COFs battery, the cathodic COF favorably works in acid with a relatively positive potential, while the anodic COF preferably runs in alkali with a relatively negative potential. It thus can deliver a decently high discharge capacity of 92.97 mAh g-1 with a wide voltage window of 2.0 V, and exhibit high energy density of 74.2 Wh kg-1 along with a considerable cyclic stability over 300 cycles. The development of the proof-of-concept all-COFs battery may drive forward the improvement of newly cost-effective and performance-reliable energy storage devices.

19.
J Colloid Interface Sci ; 636: 610-617, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669454

RESUMEN

The development of high-efficiency oxygen evolution reaction (OER) electrocatalysts is of great importance for electrolytic H2 generation. In this work, we report in-situ growth of MnCo2O4 nanoneedles and NiFeRu layered double hydroxide (LDH) nanosheets on nickel foam (NF) (MnCo2O4@NiFeRu-LDH/NF) that can function a highly efficient electrode toward electrocatalysis of OER. Such electrode demands an overpotential of as low as 205 mV to reach 10 mA cm-2 in alkaline electrolyte and can run stably over 120-hours continuous operation. A hybrid flow acid/alkali electrolyzer is set up by using the Pt/C as the acidic cathode coupling with the MnCo2O4@NiFeRu-LDH/NF as the alkaline anode, which only requires an applied voltage of 0.59 V and 0.94 V to attain an electrolytic current density of 10 mA cm-2 and 100 mA cm-2, respectively. The present work could push forward the further development of the electricity-saving electrolytic technique for H2 generation.

20.
ChemSusChem ; 16(4): e202201200, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35916231

RESUMEN

Sodium based dual-ion battery (SDIB) has been regarded as one of the promising batteries technologies thanks to its high working voltage and natural abundance of sodium source, its practical application yet faces critical issues of low capacity and sluggish kinetics of intercalation-type graphite anode. Here, a tubular nanohybrid composed of building blocks of carbon-film wrapped WS2 nanosheets on carbon nanotube (WS2 /C@CNTs) was reported. The expanded (002) interlayer and dual-carbon confined structure endowed WS2 nanosheets with fast charge transportation and excellent structural stability, and thus WS2 /C@CNTs showed highly attractive electrochemical properties for Na+ storage with high reversible capacity, fast kinetic, and robust durability. The full sodium-based dual ion batteries by coupling WS2 /C@CNTs anode with graphite cathode full cell presented a high reversible capacity (210 mAh g-1 at 0.1 A g-1 ), and excellent rate performance with a high capacity of 137 mAh g-1 at 5.0 A g-1 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA