Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Aging ; 4(1): 33-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38195725

RESUMEN

Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187). These AD subtypes had alterations in protein levels that were associated with distinct molecular processes: subtype 1 was characterized by proteins related to neuronal hyperplasticity; subtype 2 by innate immune activation; subtype 3 by RNA dysregulation; subtype 4 by choroid plexus dysfunction; and subtype 5 by blood-brain barrier impairment. Each subtype was related to specific AD genetic risk variants, for example, subtype 1 was enriched with TREM2 R47H. Subtypes also differed in clinical outcomes, survival times and anatomical patterns of brain atrophy. These results indicate molecular heterogeneity in AD and highlight the need for personalized medicine.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Proteómica
2.
J Autoimmun ; 142: 103133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931331

RESUMEN

B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-ß (IKKß, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Linfocitos B/metabolismo , Quinasa de Factor Nuclear kappa B , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo
3.
Alzheimers Res Ther ; 14(1): 95, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841015

RESUMEN

BACKGROUND: We previously identified four Alzheimer's disease (AD) subgroups with increasingly higher cerebrospinal fluid (CSF) levels of tau phosphorylated at threonine 181 (p-tau). These subgroups included individuals across the cognitive spectrum, suggesting p-tau subgroups could reflect distinct biological changes in AD, rather than disease severity. Therefore, in the current study, we further investigated which potential processes may be related with p-tau subgroups, by comparing individuals on CSF markers for presynaptic structure [vesicle-associated membrane protein 2 (VAMP2)], postsynaptic structure [neurogranin (NRGN)], axonal damage [neurofilament light (NfL)], and amyloid production [beta-secretase 1 (BACE1) and amyloid-beta 1-40 (Aß40)]. METHODS: We selected 348 amyloid-positive (A+) individuals (53 preclinical, 102 prodromal, 193 AD dementia) and 112 amyloid-negative (A-) cognitively normal (CN) individuals from the Amsterdam Dementia Cohort (ADC). Individuals were labeled according to their p-tau subgroup (subgroup 1: p-tau ≤ 56 pg/ml; subgroup 2: 57-96 pg/ml; subgroup 3: 97-159 pg/ml; subgroup 4: > 159 pg/ml). CSF protein levels were measured with ELISA (NRGN, BACE1, Aß40, NfL) or single-molecule array (Simoa) (VAMP2). We tested whether protein levels differed between the p-tau subgroups within A+ individuals with linear models corrected for age and sex and whether disease stage influenced these relationships. RESULTS: Among A+ individuals, higher p-tau subgroups showed a higher percentage of AD dementia [subgroup 1: n = 41/94 (44%); subgroup 2: n = 81/147 (55%); subgroup 3: n = 59/89 (66%); subgroup 4: n = 7/11 (64%)]. Relative to controls, subgroup 1 showed reduced CSF levels of BACE1, Aß40, and VAMP2 and higher levels of NfL. Subgroups 2 to 4 showed gradually increased CSF levels of all measured proteins, either across the first three (NfL and Aß40) or across all subgroups (VAMP2, NRGN, BACE1). The associations did not depend on the clinical stage (interaction p-values ranging between 0.19 and 0.87). CONCLUSIONS: The results suggest that biological heterogeneity in p-tau levels in AD is related to amyloid metabolism and synaptic integrity independent of clinical stage. Biomarkers reflecting amyloid metabolism and synaptic integrity may be useful outcome measures in clinical trials targeting tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/líquido cefalorraquídeo , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Amiloidogénicas , Ácido Aspártico Endopeptidasas , Biomarcadores/líquido cefalorraquídeo , Humanos , Neurogranina/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteína 2 de Membrana Asociada a Vesículas , Proteínas tau/líquido cefalorraquídeo
4.
Alzheimers Dement (Amst) ; 14(1): e12286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571963

RESUMEN

Introduction: It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods: We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results: Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion: We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.

5.
Alzheimers Res Ther ; 13(1): 2, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397464

RESUMEN

BACKGROUND: As Alzheimer's disease (AD) pathology presents decades before dementia manifests, unbiased biomarker cut-points may more closely reflect presence of pathology than clinically defined cut-points. Currently, unbiased cerebrospinal fluid (CSF) tau cut-points are lacking. METHODS: We investigated CSF t-tau and p-tau cut-points across the clinical spectrum using Gaussian mixture modelling, in two independent cohorts (Amsterdam Dementia Cohort and ADNI). RESULTS: Individuals with normal cognition (NC) (total n = 1111), mild cognitive impairment (MCI) (total n = 1213) and Alzheimer's disease dementia (AD) (total n = 1524) were included. In both cohorts, four CSF t- and p-tau distributions and three corresponding cut-points were identified. Increasingly high tau subgroups were characterized by steeper MMSE decline and higher progression risk to AD (cohort/platform-dependent HR, t-tau 1.9-21.3; p-tau 2.2-9.5). LIMITATIONS: The number of subjects in some subgroups and subanalyses was small, especially in the highest tau subgroup and in tau PET analyses. CONCLUSIONS: In two independent cohorts, t-tau and p-tau levels showed four subgroups. Increasingly high tau subgroups were associated with faster clinical decline, suggesting our approach may aid in more precise prognoses.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Humanos , Fragmentos de Péptidos , Pronóstico , Proteínas tau
6.
Crit Rev Clin Lab Sci ; 57(2): 86-98, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31694431

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and is characterized by aggregation of amyloid and tau proteins in the brain. Results from genetic studies suggest that the pathophysiology underlying AD is complex, but studying this complexity in patients remains difficult. The cerebrospinal fluid (CSF) proteome contains a large number of proteins that can reflect ongoing biological processes. Proteomics techniques can be used to measure many proteins simultaneously in individual patients and may therefore provide an opportunity to study AD disease mechanisms. Here, we review the CSF proteomics literature to identify proteins consistently associated with AD, and perform pathway analyses on these proteins to study which biological processes may be involved in the disease.We performed a literature search of studies that investigated CSF proteomic alterations related to AD. We included original research articles when they measured at least 10 proteins in (antemortem) CSF in at least 10 individuals with AD, mild cognitive impairment (MCI) or controls. We examined if proteins were consistently related to AD, defined as consistent increase or decrease in AD vs. controls across studies. Next, we used the proteins identified as input to pathway analyses using Reactome to investigate which biological processes were enriched.In total, 29 studies were included that investigated AD-related changes to the CSF proteome, including a total of 1434 individuals with AD (of whom 47.1% had a CSF biomarker profile and 9.6% a postmortem examination consistent with AD) and 1380 controls. The studies reported 1 to 138 proteins associated with AD, of which 97 proteins were reported by two or more studies. Among proteins that were measured in more than one study, 27 (27.8%) showed consistent increases, 15 (15.5%) consistent decreases and 55 (56.7%) had contrasting results. Pathway analyses showed that AD-related proteins were enriched for hemostasis, lipoprotein and extracellular matrix pathways.These results indicate that proteomic alterations in CSF associated with AD reflect involvement of various biological pathways. The frequent occurrence of inconsistent protein level changes reported by different studies suggests that additional biological and/or (pre)analytical factors may influence the CSF proteome in AD, which should be further investigated in order to improve understanding of the biological complexity underlying AD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Humanos , Fragmentos de Péptidos , Proteoma , Proteómica/métodos , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA