RESUMEN
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Asunto(s)
Núcleo Celular , Cromatina , ARN Helicasas DEAD-box , ARN Mensajero , Animales , Humanos , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Polirribosomas/metabolismo , Polirribosomas/genética , Aprendizaje Automático , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Exosomas/genéticaRESUMEN
We present Light-Seq, an approach for multiplexed spatial indexing of intact biological samples using light-directed DNA barcoding in fixed cells and tissues followed by ex situ sequencing. Light-Seq combines spatially targeted, rapid photocrosslinking of DNA barcodes onto complementary DNAs in situ with a one-step DNA stitching reaction to create pooled, spatially indexed sequencing libraries. This light-directed barcoding enables in situ selection of multiple cell populations in intact fixed tissue samples for full-transcriptome sequencing based on location, morphology or protein stains, without cellular dissociation. Applying Light-Seq to mouse retinal sections, we recovered thousands of differentially enriched transcripts from three cellular layers and discovered biomarkers for a very rare neuronal subtype, dopaminergic amacrine cells, from only four to eight individual cells per section. Light-Seq provides an accessible workflow to combine in situ imaging and protein staining with next generation sequencing of the same cells, leaving the sample intact for further analysis post-sequencing.
Asunto(s)
ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Ratones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Complementario , ADN/genéticaRESUMEN
How do neuronal subtypes emerge during development? Recent molecular studies have profiled existing neuronal diversity, but neuronal subtype genesis remains elusive. The 15 types of mouse retinal bipolar interneurons are characterized by distinct functions, morphologies, and transcriptional profiles. Here, we develop a comprehensive spatiotemporal map of bipolar subtype genesis in the murine retina. Combining multiplexed detection of 16 RNA markers with timed delivery of 5-ethynyl uridine (EdU) and bromodeoxyuridine (BrdU), we analyze more than 30,000 single cells in full retinal sections to classify all bipolar subtypes and their birthdates. We find that bipolar subtype birthdates are ordered and follow a centrifugal developmental axis. Spatial analysis reveals a striking wave pattern of bipolar subtype birthdates, and lineage analyses suggest clonal restriction on homotypic subtype production. These results inspire a hierarchical developmental model, with ordered subtype genesis within lineages. Our results provide insight into neuronal subtype development and establish a framework for studying subtype diversification.
Asunto(s)
Linaje de la Célula/fisiología , Neurogénesis/fisiología , Células Bipolares de la Retina/citología , Análisis Espacio-Temporal , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/genética , Retina/citología , Retina/metabolismo , Células Bipolares de la Retina/metabolismoRESUMEN
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Asunto(s)
Diferenciación Celular , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Retina/embriología , Células Bipolares de la Retina/metabolismo , Animales , RatonesRESUMEN
Retinitis pigmentosa (RP) is an inherited retinal disease affecting >20 million people worldwide. Loss of daylight vision typically occurs due to the dysfunction/loss of cone photoreceptors, the cell type that initiates our color and high-acuity vision. Currently, there is no effective treatment for RP, other than gene therapy for a limited number of specific disease genes. To develop a disease gene-agnostic therapy, we screened 20 genes for their ability to prolong cone photoreceptor survival in vivo. Here, we report an adeno-associated virus vector expressing Txnip, which prolongs the survival of cone photoreceptors and improves visual acuity in RP mouse models. A Txnip allele, C247S, which blocks the association of Txnip with thioredoxin, provides an even greater benefit. Additionally, the rescue effect of Txnip depends on lactate dehydrogenase b (Ldhb) and correlates with the presence of healthier mitochondria, suggesting that Txnip saves RP cones by enhancing their lactate catabolism.
Retinitis pigmentosa is an inherited eye disease affecting around one in every 4,000 people. It results from genetic defects in light sensitive cells of the retina, called photoreceptor cells, which line the back of the eye. Though vision loss can occur from birth, retinitis pigmentosa usually involves a gradual loss of vision, sometimes leading to blindness. Rod photoreceptors, which are responsible for vision in low light, are impacted first. The disease then affects cone photoreceptors, the cells that detect light during the day, providing both color and sharp vision. Around 100 mutated genes associated with retinitis pigmentosa have been identified, but only a handful of families with one of these mutant genes have been treated with a gene therapy specific for their mutated gene. There are currently no therapies available to treat the vast number of people with this disease. The mutations that cause retinitis pigmentosa directly affect the rod cells that detect dim light, leading to loss of night vision. There is also an indirect effect that causes cone photoreceptors to stop working and die. One theory to explain this two-step disease process relates to the fact that cone photoreceptors are very active cells, requiring a high level of energy, nutrients and oxygen. If surrounding rod cells die, cone photoreceptors may be deprived of some essential supplies, leading to cone cell death and daylight vision loss. To examine this theory, Xue et al. tested a new gene therapy designed to alleviate the potential shortfall in nutrients. The experiments used three different strains of mice that had the same genetic mutations as humans with retinitis pigmentosa. The gene therapy used a virus, called adeno-associated virus (AAV), to deliver 20 different genes to cone cells. Each of the 20 genes tested plays a different role in cells' processing of nutrients to provide energy. After administering the treatment, Xue et al. monitored the mice to see whether or not their vision was affected, and how cone cells responded. Only one of the 20 genes, Txnip, delivered using gene therapy, had a beneficial effect, prolonging cone cell survival in all three mouse strains. The mice that received Txnip also retained their ability to discern moving stripes on vision tests. Further investigations demonstrated that activating Txnip forced the cones to start using a molecule called lactate as an energy source, which could be more available to them than glucose, their usual fuel. These cells also had healthier mitochondria the compartments inside cells that produce and manage energy supplies. This dual effect on fuel use and mitochondrial health is thought to be the basis for the extended cone survival and function. These experiments by Xue et al. have identified a good gene therapy candidate for treating retinitis pigmentosa independently of which genes are causing the disease. Further research will be required to test the safety of the gene therapy, and whether its beneficial effects translate to humans with retinitis pigmentosa, and potentially other diseases with unhealthy photoreceptors.
Asunto(s)
Proteínas Portadoras/genética , Visión de Colores/genética , Dependovirus/fisiología , Retinitis Pigmentosa/genética , Tiorredoxinas/genética , Animales , Modelos Animales de Enfermedad , Ratones , Microorganismos Modificados Genéticamente/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/fisiopatologíaRESUMEN
Most organs and tissues are composed of many types of cells. To characterize cellular state, various transcription profiling approaches are currently available, including whole-tissue bulk RNA sequencing, single cell RNA sequencing (scRNA-Seq), and cell type-specific RNA sequencing. What is missing in this repertoire is a simple, versatile method for bulk transcriptional profiling of cell types for which cell type-specific genetic markers or antibodies are not readily available. We therefore developed Probe-Seq, which uses hybridization of gene-specific probes to RNA markers for isolation of specific types of cells, to enable downstream FACS isolation and bulk RNA sequencing. We show that this method can enable isolation and profiling of specific cell types from mouse retina, frozen human retina, Drosophila midgut, and developing chick retina, suggesting that it is likely useful for most organisms.
RESUMEN
Recent transcriptional profiling technologies are uncovering previously-undefined cell populations and molecular markers at an unprecedented pace. While single cell RNA (scRNA) sequencing is an attractive approach for unbiased transcriptional profiling of all cell types, a complementary method to isolate and sequence specific cell populations from heterogeneous tissue remains challenging. Here, we developed Probe-Seq, which allows deep transcriptional profiling of specific cell types isolated using RNA as the defining feature. Dissociated cells are labeled using fluorescent in situ hybridization (FISH) for RNA, and then isolated by fluorescent activated cell sorting (FACS). We used Probe-Seq to purify and profile specific cell types from mouse, human, and chick retinas, as well as from Drosophila midguts. Probe-Seq is compatible with frozen nuclei, making cell types within archival tissue immediately accessible. As it can be multiplexed, combinations of markers can be used to create specificity. Multiplexing also allows for the isolation of multiple cell types from one cell preparation. Probe-Seq should enable RNA profiling of specific cell types from any organism.
Asunto(s)
Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Pollos , Drosophila , Humanos , Hibridación Fluorescente in Situ , Ratones , Coloración y Etiquetado/métodosRESUMEN
Fluorescence in situ hybridization (FISH) reveals the abundance and positioning of nucleic acid sequences in fixed samples. Despite recent advances in multiplexed amplification of FISH signals, it remains challenging to achieve high levels of simultaneous amplification and sequential detection with high sampling efficiency and simple workflows. Here we introduce signal amplification by exchange reaction (SABER), which endows oligonucleotide-based FISH probes with long, single-stranded DNA concatemers that aggregate a multitude of short complementary fluorescent imager strands. We show that SABER amplified RNA and DNA FISH signals (5- to 450-fold) in fixed cells and tissues. We also applied 17 orthogonal amplifiers against chromosomal targets simultaneously and detected mRNAs with high efficiency. We then used 10-plex SABER-FISH to identify in vivo introduced enhancers with cell-type-specific activity in the mouse retina. SABER represents a simple and versatile molecular toolkit for rapid and cost-effective multiplexed imaging of nucleic acid targets.
Asunto(s)
ADN/análisis , Colorantes Fluorescentes/metabolismo , Hibridación Fluorescente in Situ/métodos , Oligonucleótidos/química , Imagen Óptica/métodos , ARN/análisis , Retina/metabolismo , Animales , Células Cultivadas , ADN/genética , ADN de Cadena Simple/química , Humanos , Ratones , ARN/genética , Retina/diagnóstico por imagenRESUMEN
Controlling cellular processes with light can help elucidate their underlying mechanisms. Here we present zapalog, a small-molecule dimerizer that undergoes photolysis when exposed to blue light. Zapalog dimerizes any two proteins tagged with the FKBP and DHFR domains until exposure to light causes its photolysis. Dimerization can be repeatedly restored with uncleaved zapalog. We implement this method to investigate mitochondrial motility and positioning in cultured neurons. Using zapalog, we tether mitochondria to constitutively active kinesin motors, forcing them down the axon towards microtubule (+) ends until their instantaneous release via blue light, which results in full restoration of their endogenous motility. We find that one-third of stationary mitochondria cannot be pulled away from their position and that these firmly anchored mitochondria preferentially localize to VGLUT1-positive presynapses. Furthermore, inhibition of actin polymerization with latrunculin A reduces this firmly anchored pool. On release from exogenous motors, mitochondria are preferentially recaptured at presynapses.