Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201888

RESUMEN

Bottom-up fabrication using DNA is a promising approach for the creation of nanoarchitectures. Accordingly, nanomaterials with specific electronic, photonic, or other functions are precisely and programmably positioned on DNA nanostructures from a disordered collection of smaller parts. These self-assembled structures offer significant potential in many domains such as sensing, drug delivery, and electronic device manufacturing. This review describes recent progress in organizing nanoscale morphologies of metals, semiconductors, and carbon nanotubes using DNA templates. We describe common substrates, DNA templates, seeding, plating, nanomaterial placement, and methods for structural and electrical characterization. Finally, our outlook for DNA-enabled bottom-up nanofabrication of materials is presented.

2.
Molecules ; 25(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092123

RESUMEN

Self-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices. We evaluate two approaches for seeding, gold and palladium, both using gold electroless plating to connect the seeds. These gold nanowires are characterized electrically utilizing electron beam induced deposition of tungsten and four-point probe techniques. Measured resistivity values for 15 successfully studied wires are between 9.3 × 10-6 and 1.2 × 10-3 Ωm. Our work yields new insights into reproducible formation and characterization of metal nanowires on DNA nanotubes, making them promising templates for future nanowires in complex electronic circuitry.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , Nanotubos/química , Nanocables/química , Oro/química , Nanoestructuras/química
3.
Langmuir ; 36(24): 6661-6667, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456432

RESUMEN

DNA origami-templated fabrication enables bottom-up fabrication of nanoscale structures from a variety of functional materials, including metal nanowires. We studied the impact of low-temperature annealing on the morphology and conductance of DNA-templated nanowires. Nanowires were formed by selective seeding of gold nanorods on DNA origami and gold electroless plating of the seeded structures. At low annealing temperatures (160 °C for seeded-only and 180 °C for plated), the wires broke up and separated into multiple, isolated islands. Through the use of polymer-constrained annealing, the island formation in plated wires was suppressed up to annealing temperatures of 210 °C. Four-point electrical measurements showed that the wires remained conductive after a polymer-constrained annealing at 200 °C.


Asunto(s)
Nanotubos , Nanocables , ADN , Oro , Polímeros
4.
Langmuir ; 34(49): 15069-15077, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30176148

RESUMEN

Bottom-up nanofabrication is increasingly making use of self-assembled DNA to fabricate nanowires and potential integrated circuits, although yields of such electronic nanostructures are inadequate, as is the ability to reliably make electrical measurements on them. In this paper, we report improved yields and unprecedented conductivity measurements for Au nanowires created on DNA origami tile substrates. We created several different self-assembled Au nanowire arrangements on DNA origami tiles that are approximately 70 nm × 90 nm, through anisotropic growth of Au nanorods attached to specific sites. Modifications to the tile design increased yields of the final desired nanostructures as much as 6-fold. In addition, we measured the conductivity of Au nanowires created on these DNA tiles (∼130 nm long, 10 nm diameter, and 40 nm spacing between measurement points) with a four-point measurement technique that utilized electron beam induced metal deposition to form probe electrodes. These nanowires formed on single DNA origami tiles were electrically conductive, having resistivities as low as 4.24 × 10-5 Ω m. This work demonstrates the creation and measurement of inorganic nanowires on single DNA origami tiles as a promising path toward future bottom-up fabrication of nanoelectronics.


Asunto(s)
ADN/química , Oro/química , Nanocables/química , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Nanotubos/química , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA