Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1426584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101034

RESUMEN

Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.

2.
Nat Commun ; 14(1): 2006, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037821

RESUMEN

The acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. The microbial community is consistently dominated by neutrophilic, chemolithoautotrophic SOB (relative abundances of ~76% in 2015, ~55% in 2016/2017 and ~60% in 2018). Results reveal two SOB strategies alternately dominate across the four years, influencing acid generation and sulfur speciation. Under oxic conditions, novel Halothiobacillus drive lower pH conditions (as low as 4.3) and lower [S2O32-] via the complete Sox pathway coupled to O2. Under anoxic conditions, Thiobacillus spp. dominate in activity, via the incomplete Sox and rDSR pathways coupled to NO3-, resulting in higher [S2O32-] and no net significant acidity generation. This study provides genomic evidence explaining acidity generation and thiosulfate accumulation patterns in a circumneutral mine tailing impoundment and has significant environmental applications in preventing the discharge of sulfur compounds that can impact downstream environments. These insights illuminate opportunities for in situ biotreatment of reduced sulfur compounds and prediction of acidification events using gene-based monitoring and in situ RNA detection.


Asunto(s)
Bacterias , Tiosulfatos , Tiosulfatos/metabolismo , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Azufre/metabolismo , Compuestos de Azufre/metabolismo , Agua/metabolismo
3.
Front Microbiol ; 10: 297, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906283

RESUMEN

The biogeochemistry of acid mine drainage (AMD) derived from waste rock associated sulfide mineral oxidation is relatively well-characterized and linked to Acidithiobacillus spp.. However, little is understood about the microbial communities and sulfur cycling before AMD develops, a key component of its prevention. This study aimed to examine circum-neutral mining impacted water (MIW) communities and its laboratory enrichments for sulfur oxidizing bacteria (SoxBac). MIW in situ microbial communities differed in diversity, structure and relative abundance consistent with site specific variations in total aqueous sulfur concentrations (TotS; ~2-17 mM), pH (3.67-7.34), and oxygen (22-93% saturation). However, the sulfur oxidizer, Halothiobacillus spp. dominated seven of the nine total SoxBac enrichment communities (~76-100% relative abundance), spanning three of the four mines. The presence and relative abundance of the identified sixteen known and five unclassified Halothiobacillus spp. here, were the important clustering determinants across parent MIW and enrichment communities. Further, the presence of Halothiobacillus spp. was associated with driving the pH <4 in enrichment experiments, and the combination of specific Halothiobacillus spp. in the enrichments affected the observed acid to sulfate ratios indicating differential sulfur cycling. Halothiobacillus spp. also dominated the parent communities of the two acidic MIWs providing corroborating evidence for its active role in net acid generation within these waters. These results identify a putative indicator organism specific to mine tailings reservoirs and highlight the need for further study of tailings associated sulfur cycling for better mine management and environmental stewardship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA