Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(32): 42189-42197, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093830

RESUMEN

Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.

2.
Small ; : e2402607, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860732

RESUMEN

The demand for high-performance energy storage devices to power Internet of Things applications has driven intensive research on micro-supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process. Using a combination of advanced techniques, the relationships among the morphology, structure, and electrochemical properties of the RuN films are investigated. The films are shown to have a complex structure containing a mixture of crystallized Ru and RuN phases with an amorphous oxide layer. The combination of high electrical conductivity and pseudocapacitive charge storage properties enabled a 16 µm-thick RuN film to achieve a capacitance value of 0.8 F cm-2 in 1 m KOH with ultra-high rate capability.

3.
Nat Mater ; 23(5): 670-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413809

RESUMEN

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm-2 (~500 F cm-3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm-3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm-2 (3,200 F cm-3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

4.
Adv Sci (Weinh) ; 9(32): e2203948, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180403

RESUMEN

A chitosan composite with a vertical array of pore channels is fabricated via an electrophoretic deposition (EPD) technique. The composite consists of chitosan and polyethylene glycol, as well as nanoparticles of silver oxide and silver. The formation of hydrogen bubbles during EPD renders a localized increase of hydroxyl ions that engenders the precipitation of chitosan. In addition, chemical interactions among the constituents facilitate the establishment of vertical channels occupied by hydrogen bubbles that leads to the unique honeycomb-like microstructure; a composite with a porosity of 84%, channel diameter of 488 µm, and channel length of 2 mm. The chitosan composite demonstrates an impressive water uptake of 2100% and a two-stage slow release of silver. In mass transport analysis, both Disperse Red 13 and ZnO powders show a much enhanced transport rate over that of commercial gauze. Due to its excellent structural integrity and channel independence, the chitosan composite is evaluated in a passive suction mode for an adhesive force of 9.8 N (0.56 N cm-2 ). The chitosan composite is flexible and is able to maintain sufficient adhesive force toward objects with different surface curvatures.


Asunto(s)
Quitosano , Quitosano/química , Electroforesis , Porosidad , Polietilenglicoles/química , Hidrógeno
5.
Artículo en Inglés | MEDLINE | ID: mdl-35666993

RESUMEN

Conversion cathodes represent a viable route to improve rechargeable Li+ battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. We further determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.

6.
Front Chem ; 10: 873783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494628

RESUMEN

The broader development of the electric car for tomorrow's mobility requires the emergence of new fast-charging negative electrode materials to replace graphite in Li-ion batteries. In this area, the design of new compounds using innovative approaches could be the key to discovering new negative electrode materials that allow for faster charging and discharging processes. Here, we present a partially substituted AgNbO3 perovskite material by introducing lanthanum in the A-site. By creating two vacancies for every lanthanum introduced in the structure, the resulting general formula becomes Ag1-3xLax□2xNbO3 (with x ≤ 0.20 and where □ is a A-site vacancy), allowing the insertion of lithium ions. The highly substituted Ag0.40La0.20□0.40NbO3 oxide shows a specific capacity of 40 mAh.g-1 at a low sweep rate (0.1 mV s-1). Interestingly, Ag0.70La0.10□0.20NbO3 retains 64% of its capacity at a very high sweep rate (50 mV s-1) and about 95% after 800 cycles. Ex situ 7Li MAS NMR experiments confirmed the insertion of lithium ions in these materials. A kinetic analysis of Ag1-3xLax□2xNbO3 underlines the ability to store charge without solid-state ion-diffusion limitations. Furthermore, in situ XRD indicates no structural modification of the compound when accommodating lithium ions, which can be considered as zero-strain material. This finding explains the interesting capacity retention observed after 800 cycles. This paper thus demonstrates an alternative approach to traditional insertion materials and identifies a different way to explore not-so common electrode materials for fast energy storage application.

7.
Adv Mater ; 34(9): e2108792, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34957613

RESUMEN

The miniaturization of electrochemical energy storage (EES) systems, one of the key challenges facing the rapid expansion of the Internet-of-Things, has been limited by poor performance of the various energy-storage components at the micrometer scale. Here, the development of a unique photopatternable porous separator that overcomes the electrolyte difficulties involving resistive losses at small dimensions is reported. The separator is based on modifying the chemistry of SU-8, an epoxy-derived photoresist, through the addition of a miscible ionic liquid. The ionic liquid serves as a templating agent, which is selectively removed by solution methods, leaving the SU-8 scaffold whose interconnected porosity provides ion transport from the confined liquid electrolyte. The photopatternable separator exhibits good electrochemical, chemical, thermal, and mechanical stability during the operation of electrochemical devices in both 2D and 3D formats. For the latter, the separator demonstrates the ability to form conformal coatings over 3D structures. The development of the photopatternable separator overcomes the electrolyte issues, which have limited progress in the field of micro-EES.

8.
Biomaterials ; 256: 120204, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622020

RESUMEN

The heart possesses a complex three-dimensional (3D) laminar myofiber organization; however, because engineering physiologically relevant 3D tissues remains a technical challenge, the effects of cardiomyocyte alignment on excitation-contraction coupling, shortening and force development have not been systematically studied. Cellular shape and orientations in 3D can be controlled by engineering scaffold microstructures and encapsulating cells near these geometric cues. Here, we show that a novel method of cell encapsulation in 3D methacrylated gelatin (GelMA) scaffolds patterned via Microscale Continuous Optical Printing (µCOP) can rapidly micropattern neonatal mouse ventricular cardiomyocytes (NMVCMs) in photocrosslinkable hydrogels. Encapsulated cardiomyocytes preferentially align with the engineered microarchitecture and can display morphology and myofibril alignment phenotypic of myocardium in vivo. Utilizing the µCOP system, an asymmetric, multi-material, cantilever-based scaffold was directly printed, so that the force produced by the microtissue was transmitted onto a single deformable pillar. Aligned 3D encapsulated NMVCM scaffolds produced nearly 2 times the force compared to aligned 2D seeded samples. To further highlight the flexibility of µCOP, NMVCMs were encapsulated in several patterns to compare the effects of varying degrees of alignment on tissue displacement and synchronicity. Well aligned myofiber cultured patterns generated 4-10 times the contractile force of less anisotropically patterned constructs. Finally, normalized fluo-4 fluorescence of NMVCM-encapsulated structures showed characteristic calcium transient waveforms that increased in magnitude and rate of decline during treatment with 100 nM isoproterenol. This novel instrumented 3D cardiac microtissue serves as a physiologically relevant in vitro model system with great potential for use in cardiac disease modeling and drug screening.


Asunto(s)
Bioimpresión , Animales , Hidrogeles , Ratones , Miocardio , Miocitos Cardíacos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
9.
ChemSusChem ; 13(5): 1013-1026, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31808623

RESUMEN

This study aims to investigate the effect of the potential window on heat generation in carbon-based electrical double layer capacitors (EDLCs) with ionic-liquid (IL)-based electrolytes using in operando calorimetry. The EDLCs consisted of two identical activated-carbon electrodes with either neat 1-butyl-1-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide ([Pyr14 ][TFSI]) electrolyte or 1.0 m [Pyr14 ][TFSI] in propylene carbonate (PC) as electrolyte. The instantaneous heat generation rate at each electrode was measured under galvanostatic cycling for different potential windows ranging from 1 to 4 V. First, the heat generation rates at the positive and negative electrodes differed significantly in neat IL owing to the differences in the ion sizes and diffusion coefficients. However, these differences were minimized when the IL was diluted in PC. Second, for EDLC in neat [Pyr14 ][TFSI] at high potential window (4 V), a pronounced endothermic peak was observed at the beginning of the charging step at the positive electrode owing to TFSI- intercalation in the activated carbon. On the other hand, for EDLC in 1.0 m [Pyr14 ][TFSI] in PC at potential window above 3 V, an endothermic peak was observed only at the negative electrode owing to the decomposition of PC. Third, for both neat and diluted [Pyr14 ][TFSI] electrolytes, the irreversible heat generation rate increased with increasing potential window and exceeded Joule heating. This was attributed to the effect of potential-dependent charge redistribution resistance. A further increase in the irreversible heat generation rate was observed for the largest potential windows owing to the degradation of the PC solvent. Finally, for both types of electrolyte, the reversible heat generation rate increased with increasing potential window because of the increase in the amount of ion adsorbed/desorbed at the electrode/electrolyte interface.

10.
Lab Chip ; 16(8): 1430-8, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26980159

RESUMEN

Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 µL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.


Asunto(s)
Dispositivos Laboratorio en un Chip , Impresión Tridimensional/instrumentación , Animales , Línea Celular , Diseño de Equipo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA