Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomolecules ; 12(2)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35204781

RESUMEN

Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.


Asunto(s)
Arterias Mesentéricas , Vasodilatadores , Animales , Ratones , Mitocondrias/metabolismo , Tionas , Vasodilatadores/farmacología
2.
Antioxid Redox Signal ; 36(16-18): 1268-1288, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34235951

RESUMEN

Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 µM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.


Asunto(s)
Sulfuro de Hidrógeno , Envejecimiento de la Piel , Animales , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Ratones , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
3.
Front Cell Dev Biol ; 9: 724905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557493

RESUMEN

Significantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (H2S) are observed in diabetic patients and correlate with microvascular dysfunction. H2S may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that H2S could prevent or treat retinal microvascular endothelial dysfunction in diabetes. Bovine retinal endothelial cells (BRECs) were exposed to normal (NG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) ± the slow-release H2S donor NaGYY4137 in vitro. Glycocalyx coverage (stained with WGA-FITC) and calcein-labeled monocyte adherence were measured. In vivo, fundus fluorescein angiography (FFA) was performed in normal and streptozotocin-induced (STZ) diabetic rats. Animals received intraocular injection of NaGYY4137 (1 µM) or the mitochondrial-targeted H2S donor AP39 (100 nM) simultaneously with STZ (prevention) or on day 6 after STZ (treatment), and the ratio of interstitial to vascular fluorescence was used to estimate apparent permeability. NaGYY4137 prevented HG-induced loss of BREC glycocalyx, increased monocyte binding to BRECs (p ≤ 0.001), and increased overall glycocalyx coverage (p ≤ 0.001). In rats, the STZ-induced increase in apparent retinal vascular permeability (p ≤ 0.01) was significantly prevented by pre-treatment with NaGYY4137 and AP39 (p < 0.05) and stabilized by their post-STZ administration. NaGYY4137 also reduced the number of acellular capillaries (collagen IV + /IB4-) in the diabetic retina in both groups (p ≤ 0.05). We conclude that NaGYY4137 and AP39 protected the retinal glycocalyx and endothelial permeability barrier from diabetes-associated loss of integrity and reduced the progression of diabetic retinopathy (DR). Hydrogen sulfide donors that target the glycocalyx may therefore be a therapeutic candidate for DR.

4.
Methods Mol Biol ; 1990: 27-42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148060

RESUMEN

The modification of proteins is a key way to alter their activity and function. Often thiols, cysteine residues, on proteins are attractive targets for such modification. Assuming that the thiol group is accessible then reactions may take place with a range of chemicals found in cells. These may include reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), reactive nitrogen species such as nitric oxide (NO), hydrogen sulfide (H2S), or glutathione. Such modifications often are instrumental to important cellular signaling processes, which ultimately result in modification of physiology of the organism. Therefore, there is a need to be able to identify such modifications. There are a variety of techniques to find proteins which may be altered in this way but here the focus is on two approaches: firstly, the use of fluorescent thiol derivatives and the subsequent use of mass spectrometry to identify the thiols involved; secondly the confirmation of such changes using biochemical assays and genetic mutants. The discussion will be based on the use of two model organisms: firstly the plant Arabidopsis thaliana (both as cell cultures and whole plants) and secondly the nematode worm Caenorhabditis elegans. However, these tools, as described, may be used in a much wider range of biological systems, including human and human tissue cultures.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Sulfuro de Hidrógeno/farmacología , Especies de Nitrógeno Reactivo/farmacología , Especies Reactivas de Oxígeno/farmacología , Contaminantes Atmosféricos/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Procesamiento Proteico-Postraduccional , Compuestos de Sulfhidrilo/química
5.
Environ Sci Technol ; 53(1): 463-474, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520632

RESUMEN

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA's reactive metabolite MBP and the development of valvular-cardiovascular disease states.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Niño , Estrógenos , Humanos , Fenoles
6.
Aging (Albany NY) ; 10(7): 1666-1681, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026406

RESUMEN

Cellular senescence is a key driver of ageing, influenced by age-related changes to the regulation of alternative splicing. Hydrogen sulfide (H2S) has similarly been described to influence senescence, but the pathways by which it accomplishes this are unclear.We assessed the effects of the slow release H2S donor Na-GYY4137 (100 µg/ml), and three novel mitochondria-targeted H2S donors AP39, AP123 and RT01 (10 ng/ml) on splicing factor expression, cell proliferation, apoptosis, DNA replication, DNA damage, telomere length and senescence-related secretory complex (SASP) expression in senescent primary human endothelial cells.All H2S donors produced up to a 50% drop in senescent cell load assessed at the biochemical and molecular level. Some changes were noted in the composition of senescence-related secretory complex (SASP); IL8 levels increased by 24% but proliferation was not re-established in the culture as a whole. Telomere length, apoptotic index and the extent of DNA damage were unaffected. Differential effects on splicing factor expression were observed depending on the intracellular targeting of the H2S donors. Na-GYY4137 produced a general 1.9 - 3.2-fold upregulation of splicing factor expression, whereas the mitochondria-targeted donors produced a specific 2.5 and 3.1-fold upregulation of SRSF2 and HNRNPD splicing factors only. Knockdown of SRSF2 or HNRNPD genes in treated cells rendered the cells non-responsive to H2S, and increased levels of senescence by up to 25% in untreated cells.Our data suggest that SRSF2 and HNRNPD may be implicated in endothelial cell senescence, and can be targeted by exogenous H2S. These molecules may have potential as moderators of splicing factor expression and senescence phenotypes.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Sulfuro de Hidrógeno/farmacología , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Factores de Empalme de ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Línea Celular , Senescencia Celular , Células Epiteliales , Regulación de la Expresión Génica/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Compuestos Organofosforados/farmacología , Factores de Empalme de ARN/genética , Factores de Empalme Serina-Arginina/genética , Tionas/farmacología , Transcriptoma
7.
Environ Sci Technol ; 52(11): 6656-6665, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29738667

RESUMEN

Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 µg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Estrógenos , Humanos , Fenoles
8.
Oxid Med Cell Longev ; 2018: 3812568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560080

RESUMEN

The infiltration of red blood cells into atheromatous plaques is implicated in atherogenesis. Inside the lesion, hemoglobin (Hb) is oxidized to ferri- and ferrylHb which exhibit prooxidant and proinflammatory activities. Cystathione gamma-lyase- (CSE-) derived H2S has been suggested to possess various antiatherogenic actions. Expression of CSE was upregulated predominantly in macrophages, foam cells, and myofibroblasts of human atherosclerotic lesions derived from carotid artery specimens of patients. A similar pattern was observed in aortic lesions of apolipoprotein E-deficient mice on high-fat diet. We identified several triggers for inducing CSE expression in macrophages and vascular smooth muscle cells including heme, ferrylHb, plaque lipids, oxidized low-density lipoprotein, tumor necrosis factor-α, and interleukin-1ß. In the interplay between hemoglobin and atheroma lipids, H2S significantly mitigated oxidation of Hb preventing the formation of ferrylHb derivatives, therefore providing a novel function as a heme-redox-intermediate-scavenging antioxidant. By inhibiting Hb-lipid interactions, sulfide lowered oxidized Hb-mediated induction of adhesion molecules in endothelium and disruption of endothelial integrity. Exogenous H2S inhibited heme and Hb-mediated lipid oxidation of human atheroma-derived lipid and human complicated lesion. Our study suggests that the CSE/H2S system represents an atheroprotective pathway for removing or limiting the formation of oxidized Hb and lipid derivatives in the atherosclerotic plaque.


Asunto(s)
Aterosclerosis/sangre , Aterosclerosis/tratamiento farmacológico , Hemoglobinas/metabolismo , Sulfuro de Hidrógeno/farmacología , Lípidos/sangre , Placa Aterosclerótica/sangre , Placa Aterosclerótica/tratamiento farmacológico , Animales , Aterosclerosis/patología , Células Cultivadas , Células Endoteliales , Humanos , Sulfuro de Hidrógeno/química , Ratones , Ratones Endogámicos C57BL , Morfolinas/química , Morfolinas/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/química , Compuestos Organotiofosforados/farmacología , Piperidinas/química , Piperidinas/farmacología , Placa Aterosclerótica/patología , Pirrolidinas/química , Pirrolidinas/farmacología
9.
Antioxid Redox Signal ; 29(5): 455-470, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29316804

RESUMEN

AIMS: Cisplatin is a major therapeutic drug for solid tumors, but can cause severe nephrotoxicity. However, the role and therapeutic potential of hydrogen sulfide (H2S), an endogenous gasotransmitter, in cisplatin-induced nephrotoxicity remain to be defined. RESULTS: Cisplatin led to the impairment of H2S production in vitro and in vivo by downregulating the expression level of cystathionine γ-lyase (CSE), which may contribute to the subsequent renal proximal tubule (RPT) cell death and thereby renal toxicity. H2S donors NaHS and GYY4137, but not AP39, mitigated cisplatin-induced RPT cell death and nephrotoxicity. The mechanisms underlying the protective effect of H2S donors included the suppression of intracellular reactive oxygen species generation and downstream mitogen-activated protein kinases by inhibiting NADPH oxidase activity, which may be possibly through persulfidating the subunit p47phox. Importantly, GYY4137 not only ameliorated cisplatin-caused renal injury but also added on more anticancer effect to cisplatin in cancer cell lines. Innovation and Conclusion: Our study provides a comprehensive understanding of the role and therapeutic potential of H2S in cisplatin-induced nephrotoxicity. Our results indicate that H2S may be a novel and promising therapeutic target to prevent cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 29, 455-470.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Sulfuro de Hidrógeno/farmacología , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Línea Celular , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Activación Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sulfuro de Hidrógeno/metabolismo , Riñón/metabolismo , Riñón/patología , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Pruebas de Función Renal , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno
10.
Shock ; 48(2): 175-184, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28107215

RESUMEN

Decreased levels of endogenous hydrogen sulfide (H2S) contribute to atherosclerosis, whereas equivocal data are available on H2S effects during sepsis. Moreover, H2S improved glucose utilization in anaesthetized, ventilated, hypothermic mice, but normothermia and/or sepsis blunted this effect. The metabolic effects of H2S in large animals are controversial. Therefore, we investigated the effects of the H2S donor GYY4137 during resuscitated, fecal peritonitis-induced septic shock in swine with genetically and diet-induced coronary artery disease (CAD). Twelve and 18 h after peritonitis induction, pigs received either GYY4137 (10 mg kg, n = 9) or vehicle (n = 8). Before, at 12 and 24 h of sepsis, we assessed left ventricular (pressure-conductance catheters) and renal (creatinine clearance, blood NGAL levels) function. Endogenous glucose production and glucose oxidation were derived from the plasma glucose isotope and the expiratory CO2/CO2 enrichment during continuous i.v. 1,2,3,4,5,6-C6-glucose infusion. GYY4137 significantly increased aerobic glucose oxidation, which coincided with higher requirements of exogenous glucose to maintain normoglycemia, as well as significantly lower arterial pH and decreased base excess. Apart from significantly lower cardiac eNOS expression and higher troponin levels, GYY4137 did not significantly influence cardiac and kidney function or the systemic inflammatory response. During resuscitated septic shock in swine with CAD, GYY4137 shifted metabolism to preferential carbohydrate utilization. Increased troponin levels are possibly due to reduced local NO availability. Cautious dosing, the timing of GYY4137 administration, and interspecies differences most likely account for the absence of any previously described anti-inflammatory or organ-protective effects of GYY4137 in this model.


Asunto(s)
Enfermedad de la Arteria Coronaria , Corazón/fisiopatología , Sulfuro de Hidrógeno , Riñón , Morfolinas , Compuestos Organotiofosforados , Resucitación , Choque Séptico , Animales , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/fisiopatología , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Sulfuro de Hidrógeno/farmacocinética , Sulfuro de Hidrógeno/farmacología , Riñón/metabolismo , Riñón/fisiopatología , Morfolinas/farmacocinética , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacocinética , Compuestos Organotiofosforados/farmacología , Choque Séptico/sangre , Choque Séptico/tratamiento farmacológico , Choque Séptico/fisiopatología , Porcinos
11.
Br J Pharmacol ; 174(4): 287-301, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27930802

RESUMEN

BACKGROUND AND PURPOSE: H2 S protects myocardium against ischaemia/reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of a mitochondria-specific H2 S donor, AP39, at reperfusion against ischaemia/reperfusion injury. EXPERIMENTAL APPROACH: Anaesthetized rats underwent myocardial ischaemia (30 min)/reperfusion (120 min) with randomization to receive interventions before reperfusion: vehicle, AP39 (0.01, 0.1, 1 µmol·kg-1 ), or control compounds AP219 and ADT-OH (1 µmol·kg-1 ). LY294002, L-NAME or ODQ were used to investigate the involvement of the RISK pathway. Myocardial samples harvested 5 min after reperfusion were analysed for RISK protein phosphorylation and isolated cardiac mitochondria were used to examine the direct mitochondrial effects of AP39. KEY RESULTS: AP39, dose-dependently, reduced infarct size. Inhibition of either PI3K/Akt, eNOS or sGC did not affect this effect of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK-3ß or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Furthermore, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co-incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibitory effect on the PTP. CONCLUSION AND IMPLICATIONS: AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. This cardioprotective effect could be mediated by inhibiting PTP via a cyclophilin D-independent mechanism. Thus, selective delivery of H2 S to mitochondria may be therapeutically applicable for employing the cardioprotective utility of H2 S.


Asunto(s)
Daño por Reperfusión Miocárdica/prevención & control , Compuestos Organofosforados/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Tionas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
12.
Pharmacol Res ; 111: 442-451, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378570

RESUMEN

Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266µmolkg(-1)) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3ß and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266µmolkg(-1) significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3ß was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3ß phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3ß during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Morfolinas/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Compuestos Organotiofosforados/farmacología , Sustancias Protectoras/farmacología , Animales , Citoprotección , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemodinámica/efectos de los fármacos , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
13.
J Pharmacol Exp Ther ; 358(3): 431-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342567

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.


Asunto(s)
Cardiotónicos/farmacología , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Animales , Cardiotónicos/uso terapéutico , Línea Celular , Humanos , Masculino , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
14.
Chem Sci ; 7(5): 3414-3426, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27170841

RESUMEN

Hydrogen sulfide (H2S) has emerged as a signalling molecule capable of regulating several important physiological functions such as blood pressure, neurotransmission and inflammation. The mechanisms behind these effects are still largely elusive and oxidative posttranslational modification of cysteine residues (protein persulfidation or S-sulfhydration) has been proposed as the main pathway for H2S-induced biological and pharmacological effects. As a signalling mechanism, persulfidation has to be controlled. Using an improved tag-switch assay for persulfide detection we show here that protein persulfide levels are controlled by the thioredoxin system. Recombinant thioredoxin showed an almost 10-fold higher reactivity towards cysteine persulfide than towards cystine and readily cleaved protein persulfides as well. This reaction resulted in H2S release suggesting that thioredoxin could be an important regulator of H2S levels from persulfide pools. Inhibition of the thioredoxin system caused an increase in intracellular persulfides, highlighting thioredoxin as a major protein depersulfidase that controls H2S signalling. Finally, using plasma from HIV-1 patients that have higher circulatory levels of thioredoxin, we could prove depersulfidase role in vivo.

15.
J Urol ; 196(6): 1778-1787, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27177428

RESUMEN

PURPOSE: Chronic obstructive uropathy can cause irreversible kidney injury, atrophy and inflammation, which can ultimately lead to fibrosis. Epithelial-mesenchymal transition is a key trigger of fibrosis that is caused by up-regulation of TGF-ß1 (transforming growth factor-ß1) and ANGII (angiotensin II). H2S is an endogenously produced gasotransmitter with cytoprotective properties. We sought to elucidate the effects of the slow-releasing H2S donor GYY4137 on chronic ureteral obstruction and evaluate the potential mechanisms. MATERIALS AND METHODS: Following unilateral ureteral obstruction male Lewis rats were given daily intraperitoneal administration of phosphate buffered saline vehicle (obstruction group) or phosphate buffered saline plus 200 µmol/kg GYY4137 (obstruction plus GYY4137 group) for 30 days. Urine and serum samples were collected to determine physiological parameters of renal function and injury. Kidneys were removed on postoperative day 30 to evaluate histopathology and protein expression. Epithelial-mesenchymal transition in LLC-PK1 pig kidney epithelial cells was induced with TGF-ß1 and treated with GYY4137 to evaluate potential mechanisms via in vitro scratch wound assays. RESULTS: H2S treatment decreased serum creatinine and the urine protein-to-creatinine excretion ratio after unilateral ureteral obstruction. In addition, H2S mitigated cortical loss, inflammatory damage and tubulointerstitial fibrosis. Tissues showed decreased expression of epithelial-mesenchymal transition markers upon H2S treatment. Epithelial-mesenchymal transition progression in LLC-PK1 was alleviated upon in vitro administration of GYY4137. CONCLUSIONS: To our knowledge our findings demonstrate for the first time the protective effects of H2S in chronic obstructive uropathy. This may represent a potential therapeutic solution to ameliorate renal damage and improve the clinical outcomes of urinary obstruction.


Asunto(s)
Sulfuro de Hidrógeno/uso terapéutico , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Morfolinas/uso terapéutico , Compuestos Organotiofosforados/uso terapéutico , Obstrucción Ureteral/complicaciones , Animales , Enfermedad Crónica , Masculino , Ratas , Ratas Endogámicas Lew , Porcinos
16.
J Pharmacol Exp Ther ; 356(1): 53-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493746

RESUMEN

Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.


Asunto(s)
Calcio/metabolismo , Sulfuro de Hidrógeno/farmacología , Arterias Mesentéricas/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Animales , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Sulfuro de Hidrógeno/metabolismo , Técnicas In Vitro , Canales de Potasio KCNQ/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Cadenas Ligeras de Miosina/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/antagonistas & inhibidores , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Vasodilatación/efectos de los fármacos
17.
Shock ; 45(1): 88-97, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26513708

RESUMEN

This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. Pretreatment with AP39 (30-300 nM) exerted a concentration-dependent protective effect against all of the above effects of GOx. Most of the effects of AP39 followed a bell-shaped concentration-response curve; at the highest concentration of GOx tested, AP39 was no longer able to afford cytoprotective effects. Rats subjected to renal ischemia/reperfusion responded with a marked increase (over four-fold over sham control baseline) blood urea nitrogen and creatinine levels in blood, indicative of significant renal damage. This was associated with increased neutrophil infiltration into the kidneys (assessed by the myeloperoxidase assay in kidney homogenates), increased oxidative stress (assessed by the malondialdehyde assay in kidney homogenates), and an increase in plasma levels of IL-12. Pretreatment with AP39 (0.1, 0.2, and 0.3 mg/kg) provided a dose-dependent protection against these pathophysiological alterations; the most pronounced protective effect was observed at the 0.3 mg/kg dose of the H2S donor; nevertheless, AP39 failed to achieve a complete normalization of any of the injury markers measured. The partial protective effects of AP39 correlated with a partial improvement of kidney histological scores and reduced TUNEL staining (an indicator of DNA damage and apoptosis). In summary, the mitochondria-targeted H2S donor AP39 exerted dose-dependent protective effects against renal epithelial cell injury in vitro and renal ischemia-reperfusion injury in vivo. We hypothesize that the beneficial actions of AP39 are related to the reduction of cellular oxidative stress, and subsequent attenuation of various positive feed-forward cycles of inflammatory and oxidative processes.


Asunto(s)
Lesión Renal Aguda/prevención & control , Citoprotección/fisiología , Sulfuro de Hidrógeno/metabolismo , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , Tionas/farmacología , Animales , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/uso terapéutico , Ratas Sprague-Dawley , Tionas/administración & dosificación , Tionas/uso terapéutico
18.
Mol Microbiol ; 98(3): 403-19, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26192090

RESUMEN

Protein kinase C constitutes a family of serine-threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of Magnaporthe oryzae. First, all attempts to generate a target deletion of PKC1, the single copy protein kinase C-encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2-encoding gene, MDL2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue-sensitive PKC1(AS) allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re-modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M. oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/enzimología , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Supervivencia Celular/fisiología , Proteínas Fúngicas/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteína Quinasa C/antagonistas & inhibidores , Interferencia de ARN , Transducción de Señal
19.
Handb Exp Pharmacol ; 230: 337-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26162843

RESUMEN

Hydrogen sulfide is rapidly emerging as a key physiological mediator and potential therapeutic tool in numerous areas such as acute and chronic inflammation, neurodegenerative and cardiovascular disease, diabetes, obesity and cancer. However, the vast majority of the published studies have employed crude sulfide salts such as sodium hydrosulfide (NaSH) and sodium sulfide (Na2S) as H2S "donors" to generate H2S. Although these salts are cheap, readily available and easy to use, H2S generated from them occurs as an instantaneous and pH-dependent dissociation, whereas endogenous H2S synthesis from the enzymes cystathionine γ-lyase, cystathionine-ß-synthase and 3-mercaptopyruvate sulfurtransferase is a slow and sustained process. Furthermore, sulfide salts are frequently used at concentrations (e.g. 100 µM to 10 mM) far in excess of the levels of H2S reported in vivo (nM to low µM). For the therapeutic potential of H2S is to be properly harnessed, pharmacological agents which generate H2S in a physiological manner and deliver physiologically relevant concentrations are needed. The phosphorodithioate GYY4137 has been proposed as "slow-release" H2S donors and has shown promising efficacy in cellular and animal model diseases such as hypertension, sepsis, atherosclerosis, neonatal lung injury and cancer. However, H2S generation from GYY4137 is inefficient necessitating its use at high concentrations/doses. However, structural modification of the phosphorodithioate core has led to compounds (e.g. AP67 and AP105) with accelerated rates of H2S generation and enhanced biological activity. In this review, the therapeutic potential and limitations of GYY4137 and related phosphorodithioate derivatives are discussed.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Citoprotección , Humanos , Morfolinas/uso terapéutico , Compuestos Organotiofosforados/uso terapéutico
20.
Nitric Oxide ; 49: 90-6, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25960429

RESUMEN

AIMS: Mitochondria-targeted hydrogen sulfide donor AP39, [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], exhibits cytoprotective effects against oxidative stress in vitro. We examined whether or not AP39 improves the neurological function and long term survival in mice subjected to cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). METHODS: Adult C57BL/6 male mice were subjected to 8 min of CA and subsequent CPR. We examined the effects of AP39 (10, 100, 1000 nmol kg(-1)) or vehicle administered intravenously at 2 min before CPR (Experiment 1). Systemic oxidative stress levels, mitochondrial permeability transition, and histological brain injury were assessed. We also examined the effects of AP39 (10, 1000 nmol kg(-1)) or vehicle administered intravenously at 1 min after return of spontaneous circulation (ROSC) (Experiment 2). ROSC was defined as the return of sinus rhythm with a mean arterial pressure >40 mm Hg lasting at least 10 seconds. RESULTS: Vehicle treated mice subjected to CA/CPR had poor neurological function and 10-day survival rate (Experiment 1; 15%, Experiment 2; 23%). Administration of AP39 (100 and 1000 nmol kg(-1)) 2 min before CPR significantly improved the neurological function and 10-day survival rate (54% and 62%, respectively) after CA/CPR. Administration of AP39 before CPR attenuated mitochondrial permeability transition pore opening, reactive oxygen species generation, and neuronal degeneration after CA/CPR. Administration of AP39 1 min after ROSC at 10 nmol kg(-1), but not at 1000 nmol kg(-1), significantly improved the neurological function and 10-day survival rate (69%) after CA/CPR. CONCLUSION: The current results suggest that administration of mitochondria-targeted sulfide donor AP39 at the time of CPR or after ROSC improves the neurological function and long term survival rates after CA/CPR by maintaining mitochondrial integrity and reducing oxidative stress.


Asunto(s)
Paro Cardíaco/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Sustancias Protectoras/química , Tiofenos/química , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA