Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS One ; 19(10): e0312775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39466773

RESUMEN

Intestinal parasites are part of the intestinal ecosystem and have been shown to establish close interactions with the intestinal microbiota. However, little is known about the influence of intestinal protozoa on the regulation of the immune response. In this study, we analyzed the regulation of the immune response of germ-free mice transplanted with fecal microbiota (FMT) from individuals with multiple parasitic protozoans (P) and non-parasitized individuals (NP). We determined the production of intestinal cytokines, the lymphocyte populations in both the colon and the spleen, and the genetic expression of markers of intestinal epithelial integrity. We observed a general downregulation of the intestinal immune response in mice receiving FMT-P. We found significantly lower intestinal production of the cytokines IL-6, TNF, IFN-γ, MCP-1, IL-10, and IL-12 in the FMT-P. Furthermore, a significant decrease in the proportion of CD3+, CD4+, and Foxp3+ T regulatory cells (Treg) was observed in both, the colon and spleen with FMT-P in contrast to FMT-NP. We also found that in FMT-P mice there was a significant decrease in tjp1 expression in all three regions of the small intestine; ocln in the ileum; reg3γ in the duodenum and relmß in both the duodenum and ileum. We also found an increase in colonic mucus layer thickness in mice colonized with FMT-P in contrast with FMT-NP. Finally, our results suggest that gut protozoa, such as Blastocystis hominis, Entamoeba coli, Endolimax nana, Entamoeba histolytica/E. dispar, Iodamoeba bütschlii, and Chilomastix mesnili consortia affect the immunoinflammatory state and induce functional changes in the intestine via the gut microbiota. Likewise, it allows us to establish an FMT model in germ-free mice as a viable alternative to explore the effects that exposure to intestinal parasites could have on the immune response in humans.


Asunto(s)
Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Animales , Ratones , Microbioma Gastrointestinal/inmunología , Citocinas/metabolismo , Linfocitos T Reguladores/inmunología , Intestinos/inmunología , Intestinos/parasitología , Intestinos/microbiología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Regulación hacia Abajo , Femenino , Bazo/inmunología , Bazo/metabolismo
2.
PLoS Biol ; 22(8): e3002761, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146372

RESUMEN

Enteric pathogens navigate distinct regional microenvironments within the intestine that cue important adaptive behaviors. We investigated the response of Citrobacter rodentium, a model of human pathogenic Escherichia coli infection in mice, to regional gastrointestinal pH. We found that small intestinal pH (4.4-4.8) triggered virulence gene expression and altered cell morphology, supporting initial intestinal attachment, while higher pH, representative of C. rodentium's replicative niches further along the murine intestine, supported pathogen growth. Gastric pH, a key barrier to intestinal colonization, caused significant accumulation of intra-bacterial reactive oxygen species (ROS), inhibiting growth of C. rodentium and related human pathogens. Within-host adaptation increased gastric acid survival, which may be due to a robust acid tolerance response (ATR) induced at colonic pH. However, the intestinal environment changes throughout the course of infection. We found that murine gastric pH decreases postinfection, corresponding to increased serum gastrin levels and altered host expression of acid secretion-related genes. Similar responses following Salmonella infection may indicate a protective host response to limit further pathogen ingestion. Together, we highlight interlinked bacterial and host adaptive pH responses as an important component of host-pathogen coevolution.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Interacciones Huésped-Patógeno , Animales , Concentración de Iones de Hidrógeno , Citrobacter rodentium/patogenicidad , Citrobacter rodentium/fisiología , Ratones , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Ratones Endogámicos C57BL , Adaptación Fisiológica , Femenino , Especies Reactivas de Oxígeno/metabolismo , Intestinos/microbiología , Humanos , Virulencia , Escherichia coli/metabolismo , Escherichia coli/fisiología
3.
Nat Microbiol ; 8(12): 2392-2405, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973864

RESUMEN

Globally, ~340 million children suffer from multiple micronutrient deficiencies, accompanied by high pathogenic burden and death due to multidrug-resistant bacteria. The microbiome is a reservoir of antimicrobial resistance (AMR), but the implications of undernutrition on the resistome is unclear. Here we used a postnatal mouse model that is deficient in multiple micronutrients (that is, zinc, folate, iron, vitamin A and vitamin B12 deficient) and shotgun metagenomic sequencing of faecal samples to characterize gut microbiome structure and functional potential, and the resistome. Enterobacteriaceae were enriched in micronutrient-deficient mice compared with mice fed an isocaloric experimental control diet. The mycobiome and virome were also altered with multiple micronutrient deficiencies including increased fungal pathogens such as Candida dubliniensis and bacteriophages. Despite being antibiotic naïve, micronutrient deficiency was associated with increased enrichment of genes and gene networks encoded by pathogenic bacteria that are directly or indirectly associated with intrinsic antibiotic resistance. Bacterial oxidative stress was associated with intrinsic antibiotic resistance in these mice. This analysis reveals multi-kingdom alterations in the gut microbiome as a result of co-occurring multiple micronutrient deficiencies and the implications for antibiotic resistance.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Humanos , Niño , Animales , Ratones , Antibacterianos/farmacología , Microbioma Gastrointestinal/genética , Farmacorresistencia Microbiana , Bacterias/genética , Micronutrientes
4.
Gut Microbes ; 15(2): 2267189, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37842938

RESUMEN

Quorum Sensing (QS) is a form of cell-to-cell communication that enables bacteria to modify behavior according to their population density. While QS has been proposed as a potential intervention against pathogen infection, QS-mediated communication within the mammalian digestive tract remains understudied. Using an LC-MS/MS approach, we discovered that Citrobacter rodentium, a natural murine pathogen used to model human infection by pathogenic Escherichia coli, utilizes the CroIR system to produce three QS-molecules. We then profiled their accumulation both in vitro and across different gastrointestinal sites over the course of infection. Importantly, we found that in the absence of QS capabilities the virulence of C. rodentium is enhanced. This highlights the role of QS as an effective mechanism to regulate virulence according to the pathogen's spatio-temporal context to optimize colonization and transmission success. These results also demonstrate that inhibiting QS may not always be an effective strategy for the control of virulence.


Asunto(s)
Microbioma Gastrointestinal , Percepción de Quorum , Humanos , Animales , Ratones , Virulencia , Citrobacter rodentium , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tracto Gastrointestinal , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mamíferos
5.
J Immunol Res ; 2023: 9603576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545544

RESUMEN

Background: Studies suggest that early-life gut microbiota composition and intestinal short-chain fatty acids (SCFAs) are linked to future asthma susceptibility. Furthermore, infancy offers a critical time window to modulate the microbiota and associated metabolites through diet-microbe interactions to promote infant health. Human milk oligosaccharides (HMOs), nondigestible carbohydrates abundant in breast milk, are prebiotics selectively metabolized by gut microbiota that consequently modify microbiome composition and SCFA production. Methods: Using a house dust mite mouse model of allergy, we investigated the impacts of early oral treatment of pups with biologically relevant doses of 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL), two of the most abundant HMOs in human milk, in amelioration of allergic airway disease severity. Results: We found that administration of 2'-FL and 6'-SL during early life reduced lung histopathology scores, circulating IgE, cytokine levels, and inflammatory cell infiltration, all hallmark symptoms of allergic asthma. HMO supplementation also increased the relative abundance of intestinal Bacteroidetes and Clostridia, known SCFA producers within the gut. Indeed, we detected increased SCFA concentrations in both the intestine and blood of adult mice who received HMOs prior to weaning. Conclusion: We propose a model in which orally administered HMOs delivered during early life shift the microbiota toward increased production of SCFAs, which dampens the allergic immune responses behind allergy and asthma. Overall, these data suggest the potential for HMO supplementation to protect infants against asthma development later in life, with possible benefits against additional atopic diseases such as eczema and food allergies.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Humanos , Lactante , Femenino , Animales , Ratones , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Asma/metabolismo , Microbioma Gastrointestinal/fisiología , Ácidos Grasos Volátiles/metabolismo
6.
Gut Microbes ; 15(1): 2190303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36951510

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Microbiota , Humanos , Escherichia coli Enterohemorrágica/genética , Biotina/metabolismo , Colon
7.
ISME J ; 17(1): 36-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36153406

RESUMEN

The gastrointestinal (GI) environment plays a critical role in shaping enteric infections. Host environmental factors create bottlenecks, restrictive events that reduce the genetic diversity of invading bacterial populations. However, the identity and impact of bottleneck events on bacterial infection are largely unknown. We used Citrobacter rodentium infection of mice, a model of human pathogenic Escherichia coli infections, to examine bacterial population dynamics and quantify bottlenecks to host colonization. Using Sequence Tag-based Analysis of Microbial Populations (STAMP) we characterized the founding population size (Nb') and relatedness of C. rodentium populations at relevant tissue sites during early- and peak-infection. We demonstrate that the GI environment severely restricts the colonizing population, with an average Nb' of only 12-43 lineages (of 2,000+ inoculated) identified regardless of time or biogeographic location. Passage through gastric acid and escape to the systemic circulation were identified as major bottlenecks during C. rodentium colonization. Manipulating such events by increasing gastric pH dramatically increased intestinal Nb'. Importantly, removal of the stomach acid barrier had downstream consequences on host systemic colonization, morbidity, and mortality. These findings highlight the capability of the host GI environment to limit early pathogen colonization, controlling the population of initial founders with consequences for downstream infection outcomes.


Asunto(s)
Infecciones por Enterobacteriaceae , Infecciones por Escherichia coli , Ratones , Humanos , Animales , Citrobacter rodentium/genética , Ácido Gástrico , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Tracto Gastrointestinal/microbiología , Ratones Endogámicos C57BL
8.
Cell Rep ; 39(4): 110731, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476983

RESUMEN

The type VI secretion system (T6SS) is a contractile nanomachine widely distributed among pathogenic and commensal Gram-negative bacteria. The T6SS is used for inter-bacterial competition to directly kill competing species; however, its importance during bacterial infection in vivo remains poorly understood. We report that the murine pathogen Citrobacter rodentium, used as a model for human pathogenic Escherichia coli, harbors two functional T6SSs. C. rodentium employs its T6SS-1 to colonize the murine gastrointestinal tract by targeting commensal Enterobacteriaceae. We identify VgrG1 as a C. rodentium T6SS antibacterial effector, which exhibits toxicity in E. coli. Conversely, commensal prey species E. coli Mt1B1 employs two T6SSs of its own to counter C. rodentium colonization. Collectively, these data demonstrate that the T6SS is a potent weapon during bacterial competition and is used by both invading pathogens and resident microbiota to fight for a niche in the hostile gut environment.


Asunto(s)
Sistemas de Secreción Tipo VI , Animales , Bacterias , Escherichia coli , Tracto Gastrointestinal/microbiología , Humanos , Ratones , Simbiosis
9.
Glia ; 70(5): 820-841, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35019164

RESUMEN

Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Animales , Cognición , Microbioma Gastrointestinal/fisiología , Desnutrición/complicaciones , Ratones , Ratones Endogámicos C57BL , Microglía
10.
Elife ; 102021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33876729

RESUMEN

Bacterial members of the infant gut microbiota and bacterial-derived short-chain fatty acids (SCFAs) have been shown to be protective against childhood asthma, but a role for the fungal microbiota in asthma etiology remains poorly defined. We recently reported an association between overgrowth of the yeast Pichia kudriavzevii in the gut microbiota of Ecuadorian infants and increased asthma risk. In the present study, we replicated these findings in Canadian infants and investigated a causal association between early life gut fungal dysbiosis and later allergic airway disease (AAD). In a mouse model, we demonstrate that overgrowth of P. kudriavzevii within the neonatal gut exacerbates features of type-2 and -17 inflammation during AAD later in life. We further show that P. kudriavzevii growth and adherence to gut epithelial cells are altered by SCFAs. Collectively, our results underscore the potential for leveraging inter-kingdom interactions when designing putative microbiota-based asthma therapeutics.


Asunto(s)
Asma/microbiología , Microbioma Gastrointestinal/fisiología , Pichia/fisiología , Animales , Bacterias , Fenómenos Fisiológicos Bacterianos , Estudios de Casos y Controles , Niño , Preescolar , Humanos , Lactante , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos
11.
Cell Host Microbe ; 27(6): 909-921.e5, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32289261

RESUMEN

Immunoglobulin (Ig) A controls host-microbial homeostasis in the gut. IgA recognition of beneficial bacteria is decreased in acutely undernourished children, but the factors driving these changes in IgA targeting are unknown. Child undernutrition is a global health challenge that is exacerbated by poor sanitation and intestinal inflammation. To understand how nutrition impacts immune-microbe interactions, we used a mouse model of undernutrition with or without fecal-oral exposure and assessed IgA-bacterial targeting from weaning to adulthood. In contrast to healthy control mice, undernourished mice fail to develop IgA recognition of intestinal Lactobacillus. Glycan-mediated interactions between Lactobacillus and host antibodies are lost in undernourished mice due to rapid bacterial adaptation. Lactobacillus adaptations occur in direct response to nutritional pressure, independently of host IgA, and are associated with reduced mucosal colonization and with bacterial mutations in carbohydrate processing genes. Together these data indicate that diet-driven bacterial adaptations shape IgA recognition in the gut.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunoglobulina A/inmunología , Estado Nutricional , Simbiosis/fisiología , Adulto , Animales , Bacterias/genética , Proteínas de Unión al ADN/genética , Dieta , Heces/microbiología , Homeostasis , Humanos , Inflamación , Intestino Delgado , Lactobacillus/fisiología , Ratones , Ratones Noqueados , Polisacáridos , Azúcares/metabolismo
12.
Cell Microbiol ; 21(11): e13107, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31454133

RESUMEN

Gastrointestinal (GI) pathogens enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), and related mouse pathogen Citrobacter rodentium, are referred to as attaching and effacing (AE) pathogens for the lesions they form upon colonisation of the host epithelium. EPEC, EHEC, and C. rodentium are well known to use a type III secretion system to intimately attach to intestinal cells and secrete bacterial effectors to manipulate host cell processes. Less well known is the ability of AE pathogens to overcome significant physiological and microbial barriers and target specific gut niches for initial colonisation of the host epithelium. This review considers recent work highlighting the biogeography of the GI tract as it applies to colonisation by enteric pathogens, including environmental barriers to enteric infection, signals sensed by AE pathogens for navigation of the GI tract, and the tools AE pathogens use to respond to the changing host environment.


Asunto(s)
Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/microbiología , Tracto Gastrointestinal/microbiología , Mucosa Intestinal/microbiología , Animales , Citrobacter rodentium/patogenicidad , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Tracto Gastrointestinal/química , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Interacciones Microbiota-Huesped , Humanos , Mucosa Intestinal/inmunología , Ratones , Microbiota/inmunología , Filogeografía , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo
13.
Mol Microbiol ; 111(3): 700-716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536519

RESUMEN

Envelope-localized proteins, such as adhesins and secretion systems, play critical roles in host infection by Gram-negative pathogens. As such, their folding is monitored by envelope stress response systems. Previous studies demonstrated that the Cpx envelope stress response is required for virulence of Citrobacter rodentium, a murine pathogen used to model infections by the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli; however, the mechanisms by which the Cpx response promotes host infection were previously unknown. Here, we characterized the C. rodentium Cpx regulon in order to identify genes required for host infection. Using transcriptomic and proteomic approaches, we found that the Cpx response upregulates envelope-localized protein folding and degrading factors but downregulates pilus genes and type III secretion effectors. Mouse infections with C. rodentium strains lacking individual Cpx-regulated genes showed that the chaperone/protease DegP and the disulfide bond oxidoreductase DsbA were essential for infection, but Cpx regulation of these genes did not fully account for attenuation of C. rodentium ΔcpxRA. Both deletion of dsbA and treatment with the reducing agent dithiothreitol activated the C. rodentium Cpx response, suggesting that it may sense disruption of disulfide bonding. Our results highlight the importance of envelope protein folding in host infection by Gram-negative pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/genética , Infecciones por Enterobacteriaceae/microbiología , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Regulón , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Proteoma/análisis
14.
J Infect Dis ; 215(8): 1245-1254, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28368463

RESUMEN

Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection.


Asunto(s)
Coinfección/inmunología , Helmintiasis/inmunología , Parasitosis Intestinales/inmunología , Mucosa Intestinal/metabolismo , Metaboloma , Infecciones por Salmonella/inmunología , Células Th2/inmunología , Animales , Coinfección/microbiología , Coinfección/parasitología , Células HeLa , Humanos , Intestinos/microbiología , Intestinos/parasitología , Ratones , Ratones Endogámicos C57BL , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA