Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Int ; 179: 108119, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597498

RESUMEN

POD diffusive samplers loaded with Carbopack X and Carbograph 5TD were exposed to certified calibration mixtures containing a total of 110 different ozone precursor and air toxic compounds. Constant sampling rates were identified for 39 ozone precursors and 33 air toxics. As 9 of these compounds were included in both mixtures, this meant a total of 63 different volatile and very volatile compounds were sampled using the POD with overall expanded uncertainties below 30 % for the sampling rate associated with the whole range of sampling times from 2 to 24 h. Carbograph 5TD exhibited superior performance for diffusive sampling of oxygenated and halogenated compounds in the air toxics mixture, while Carbopack X showed higher sampling efficiencies for aliphatic and aromatic hydrocarbons, as well as halogenated compounds derived from benzene and C2 carbon number hydrocarbons. A model has been developed and applied to estimate sampling rates, primarily for the more volatile and weakly adsorbed compounds, as a function of the collected amount of analyte and the exposure time. For an additional 9 ozone precursors on Carbopack X, and 11 air toxics on Carbograph 5TD, the expanded uncertainties of modelled sampling rates were reduced to below 30 % and have a significantly reduced uncertainty compared to those associated with an averaged sampling rate. The paper provides Freundlich's isotherm parameters for the estimated (modelled) sampling rates and defines a pragmatic approach to their application. It does so by identifying the best sampling time to use for the expected exposure concentrations and associated analyte masses. This allows for expansion of the sampling concentration range from hundreds ng m-3 to mg m-3, while avoiding saturation of the adsorbent. Finally, field measurement comparisons of POD samplers, pumped tube samplers and online gas chromatography (GC), for sampling periods of 3 and 7 days in a semi-rural background area, showed no significant differences between reported concentrations.


Asunto(s)
Benceno , Ozono , Calibración , Carbono , Peso Molecular
2.
Sci Total Environ ; 410-411: 205-16, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22018965

RESUMEN

Diesels and lubricants used at research stations can persist in terrestrial and marine sediments for decades, but knowledge of their effects on the surrounding environments is limited. In a 5 year in situ investigation, marine sediment spiked with Special Antarctic Blend (SAB) diesel was placed on the seabed of O'Brien Bay near Casey Station, Antarctica and sampled after 5, 56, 65, 104 and 260 weeks. The rates and possible mechanisms of removal of the diesel from the marine sediments are presented here. The hydrocarbons within the spiked sediment were removed at an overall rate of 4.7mg total petroleum hydrocarbons kg(-1) sediment week(-1), or 245mgkg(-1)year(-1), although seasonal variation was evident. The concentration of total petroleum hydrocarbons fell markedly from 2020±340mgkg(-1) to 800±190mgkg(-1), but after 5 years the spiked sediment was still contaminated relative to natural organic matter (160±170mgkg(-1)). Specific compounds in SAB diesel preferentially decreased in concentration, but not as would be expected if biodegradation was the sole mechanism responsible. Naphthalene was removed more readily than n-alkanes, suggesting that aqueous dissolution played a major role in the reduction of SAB diesel. 1,3,5,7-Teramethyladamantane and 1,3-dimethyladamantane were the most recalcitrant isomers in the spiked marine sediment. Dissolution of aromatic compounds from marine sediment increases the availability of more soluble, aromatic compounds in the water column. This could increase the area of contamination and potentially broaden the region impacted by ecotoxicological effects from shallow sediment dwelling fauna, as noted during biodegradation, to shallow (<19m) water dwelling fauna.


Asunto(s)
Gasolina/análisis , Sedimentos Geológicos/química , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Regiones Antárticas , Biodegradación Ambiental , Monitoreo del Ambiente , Ionización de Llama
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA