Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971798

RESUMEN

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Asunto(s)
Carbono , Yacimiento de Petróleo y Gas , Filogenia , Carbono/metabolismo , Yacimiento de Petróleo y Gas/microbiología , ARN Ribosómico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
2.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971740

RESUMEN

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Asunto(s)
Transferencia de Gen Horizontal , Mercurio , Operón , Simbiosis , Transcriptoma , Mercurio/metabolismo , Mercurio/toxicidad , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiología del Suelo
3.
ACS Chem Biol ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909314

RESUMEN

Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.

4.
Sci Data ; 11(1): 432, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693191

RESUMEN

The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.


Asunto(s)
Clostridium , Genoma Bacteriano , Filogenia , Clostridium/genética , Solventes , Fermentación
5.
Genome Biol Evol ; 16(4)2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38648506

RESUMEN

The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.


Asunto(s)
Genoma Bacteriano , Filogenia , Xanthomonas , Xanthomonas/genética , Xanthomonas/patogenicidad , Xanthomonas/clasificación , Variación Genética , Simbiosis
6.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352480

RESUMEN

Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.

7.
Nucleic Acids Res ; 52(D1): D164-D173, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930866

RESUMEN

Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.


Asunto(s)
Metagenoma , Microbiota , Humanos , Metadatos , Programas Informáticos , Bases de Datos Genéticas , Plásmidos/genética
8.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38108591

RESUMEN

In this study, a Gram-stain-positive, non-motile, oxidase- and catalase-negative, rod-shaped, bacterial strain (SG_E_30_P1T) that formed light yellow colonies was isolated from a groundwater sample of Sztaravoda spring, Hungary. Based on 16S rRNA phylogenetic and phylogenomic analyses, the strain was found to form a distinct linage within the family Microbacteriaceae. Its closest relatives in terms of near full-length 16S rRNA gene sequences are Salinibacterium hongtaonis MH299814 (97.72 % sequence similarity) and Leifsonia psychrotolerans GQ406810 (97.57 %). The novel strain grows optimally at 20-28 °C, at neutral pH and in the presence of NaCl (1-2 w/v%). Strain SG_E_30_P1T contains MK-7 and B-type peptidoglycan with diaminobutyrate as the diagnostic amino acid. The major cellular fatty acids are anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0, and the polar lipid profile is composed of diphosphatidylglycerol and phosphatidylglycerol, as well as an unidentified aminoglycolipid, aminophospholipid and some unidentified phospholipids. The assembled draft genome is a contig with a total length of 2 897 968 bp and a DNA G+C content of 65.5 mol%. Amino acid identity values with it closest relatives with sequenced genomes of <62.54 %, as well as other genome distance results, indicate that this bacterium represents a novel genus within the family Microbacteriaceae. We suggest that SG_E_30_P1T (=DSM 111415T=NCAIM B.02656T) represents the type strain of a novel genus and species for which the name Antiquaquibacter oligotrophicus gen. nov., sp. nov. is proposed.


Asunto(s)
Actinomycetales , Agua Subterránea , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias , Aminoácidos
9.
PLoS Biol ; 21(9): e3002292, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747940

RESUMEN

Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.


Asunto(s)
Archaea , Sulfatos , Anaerobiosis , Sulfatos/metabolismo , Sedimentos Geológicos/microbiología , Bacterias/genética , Oxidación-Reducción , Filogenia
10.
Nat Microbiol ; 8(9): 1619-1633, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500801

RESUMEN

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.


Asunto(s)
Archaea , Simbiosis , Archaea/genética , Archaea/metabolismo , Simbiosis/genética , Genómica , Plásmidos , ADN/metabolismo
11.
Microbiome ; 11(1): 130, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312139

RESUMEN

BACKGROUND: Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. RESULTS: We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. CONCLUSIONS: Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo. Video Abstract.


Asunto(s)
Productos Biológicos , Gastrópodos , Animales , Bacterias/genética , Colorantes Fluorescentes , Lactonas , Preparaciones Farmacéuticas
12.
Sci Data ; 10(1): 332, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244914

RESUMEN

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , Bacterias/genética , Bacterias/metabolismo , Genómica , Microbiota , Oxígeno , Agua de Mar/microbiología , Archaea/genética , Archaea/metabolismo , Análisis de la Célula Individual
13.
Nat Rev Genet ; 24(8): 490, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37258726
14.
ISME J ; 17(7): 952-966, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37041326

RESUMEN

Although the phylum Chloroflexota is ubiquitous, its biology and evolution are poorly understood due to limited cultivability. Here, we isolated two motile, thermophilic bacteria from hot spring sediments belonging to the genus Tepidiforma and class Dehalococcoidia within the phylum Chloroflexota. A combination of cryo-electron tomography, exometabolomics, and cultivation experiments using stable isotopes of carbon revealed three unusual traits: flagellar motility, a peptidoglycan-containing cell envelope, and heterotrophic activity on aromatics and plant-associated compounds. Outside of this genus, flagellar motility has not been observed in Chloroflexota, and peptidoglycan-containing cell envelopes have not been described in Dehalococcoidia. Although these traits are unusual among cultivated Chloroflexota and Dehalococcoidia, ancestral character state reconstructions showed flagellar motility and peptidoglycan-containing cell envelopes were ancestral within the Dehalococcoidia, and subsequently lost prior to a major adaptive radiation of Dehalococcoidia into marine environments. However, despite the predominantly vertical evolutionary histories of flagellar motility and peptidoglycan biosynthesis, the evolution of enzymes for degradation of aromatics and plant-associated compounds was predominantly horizontal and complex. Together, the presence of these unusual traits in Dehalococcoidia and their evolutionary histories raise new questions about the timing and selective forces driving their successful niche expansion into global oceans.


Asunto(s)
Chloroflexi , Peptidoglicano , Filogenia , Peptidoglicano/metabolismo , Bacterias , Fenotipo
15.
Nat Microbiol ; 8(4): 727-744, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928026

RESUMEN

Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 µm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.


Asunto(s)
Nanopartículas Calcificantes , Microbiota , Humanos , Nanopartículas Calcificantes/metabolismo , Bacterias/metabolismo , Microbiota/genética
16.
Front Microbiol ; 14: 1082107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925474

RESUMEN

Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.

17.
ISME Commun ; 3(1): 10, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732595

RESUMEN

The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNATyr gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.

18.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382399

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Asunto(s)
Manejo de Datos , Genómica , Genoma Bacteriano , Programas Informáticos , Genoma Arqueal , Bases de Datos Genéticas , Metagenoma
19.
Nucleic Acids Res ; 51(D1): D733-D743, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399502

RESUMEN

Viruses are widely recognized as critical members of all microbiomes. Metagenomics enables large-scale exploration of the global virosphere, progressively revealing the extensive genomic diversity of viruses on Earth and highlighting the myriad of ways by which viruses impact biological processes. IMG/VR provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata. A web interface enables users to efficiently browse and search viruses based on genome features and/or sequence similarity. Here, we present the fourth version of IMG/VR, composed of >15 million virus genomes and genome fragments, a ≈6-fold increase in size compared to the previous version. These clustered into 8.7 million viral operational taxonomic units, including 231 408 with at least one high-quality representative. Viral sequences in IMG/VR are now systematically identified from genomes, metagenomes, and metatranscriptomes using a new detection approach (geNomad), and IMG standard annotation are complemented with genome quality estimation using CheckV, taxonomic classification reflecting the latest taxonomic standards, and microbial host taxonomy prediction. IMG/VR v4 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.


Asunto(s)
Bases de Datos Genéticas , Genoma Viral , Metadatos , Metagenómica , Programas Informáticos
20.
Microbiol Resour Announc ; 11(11): e0062022, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36259954

RESUMEN

We report here the genome sequences of three Aquimarina megaterium strains isolated from the octocoral Eunicella labiata. We reveal a coding potential for versatile carbon metabolism and biosynthesis of natural products belonging to the polyketide, nonribosomal peptide, and terpene compound classes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA