Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomol Biomed ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972051

RESUMEN

Colorectal adenocarcinoma (COAD) is a significant cause of cancer-related mortality worldwide, necessitating the identification of novel therapeutic targets and treatments. This research aimed to investigate the role of ARL3 in COAD progression and to explore the effects of Piperine on ARL3 expression, cell proliferation, epithelial-mesenchymal transition (EMT), and endoplasmic reticulum (ER) stress. Bioinformatics analysis of The Cancer Genome Atlas (TCGA)-COAD, GSE39582, and GSE44861 datasets assessed ARL3 expression levels. Immunohistochemical data from the Human Protein Atlas (HPA) database confirmed ARL3 overexpression in COAD. The association of ARL3 with COAD clinical parameters and prognosis was also examined. COAD cells were treated with Piperine, and in vitro assays evaluated cell proliferation, apoptosis, EMT marker expression, and ER stress responses. ARL3 overexpression in COAD correlated with poor prognosis and varied across pathological stages. Piperine treatment inhibited COAD cell proliferation in a concentration- and time-dependent manner, as indicated by reduced Ki-67 levels and decreased colony-forming ability. Piperine induced S-phase cell cycle arrest and facilitated apoptosis in COAD cells, evidenced by changes in Bax, Bcl-2, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP) levels. Moreover, Piperine downregulated ARL3 expression in COAD cells, thereby suppressing transforming growth factor beta (TGF-ß)-induced EMT. Additionally, Piperine attenuated the ARL3-mediated ER stress response, significantly reducing binding immunoglobulin protein (BiP), inositol-requiring enzyme 1 alpha (p-IRE1α), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) levels. Piperine exerted anti-cancer effects in COAD by modulating ARL3 expression, disrupting cell cycle progression, inhibiting the EMT pathway, and regulating ER stress. These findings suggest that Piperine holds promise as a therapeutic agent for COAD through its targeting of ARL3.

2.
Sci Rep ; 14(1): 10642, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724565

RESUMEN

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Asunto(s)
Cetuximab , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Wnt , beta Catenina , Humanos , Antineoplásicos Inmunológicos/farmacología , beta Catenina/metabolismo , beta Catenina/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cetuximab/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pronóstico , Vía de Señalización Wnt/efectos de los fármacos
3.
Cell Cycle ; 22(17): 1807-1826, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37587724

RESUMEN

Background: Cancer-associated fibroblast (CAF) exosomal miRNAs have gradually a hot spot in cancer therapy. This study mainly explores the effect of CAF-derived exosomal miR-29b-1-5p on gastric cancer (GC) cells.Methods: CAFs and exosomes were identified by Western blot and transmission electron microscopy. CAF-derived exosomes-GC cells co-culture systems were constructed. Effects of CAF-derived exosomal miR-29b-1-5p on GC cells were determined by cell counting kit-8, flow cytometry, wound healing, Transwell assays and Western blot. The relationship between miR-29b-1-5p and immunoglobulin domain-containing 1 (VSIG1) was assessed by TargetScan, dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. The interaction between VSIG1 and zonula occluden-1 (ZO-1) was detected by co-immunoprecipitation. Expressions of miR-29b-1-5p, VSIG1 and ZO-1 were determined by quantitative real-time PCR. Vascular mimicry (VM) was detected using immunohistochemistry and tube formation assays. Rescue experiments and xenograft tumor assays were used to further determine the effect of CAF-derived exosomal miR-29b-1-5p/VSIG1 on GC.Results: VM structure, upregulation of miR-29b-1-5p, and downregulation of VSIG1 and ZO-1 were shown in GC tissues. MiR-29b-1-5p targeted VSIG1, which interacted with ZO-1. CAF-derived exosomal miR-29b-1-5p inhibitor suppressed the viability, migration, invasion and VM formation, but promoted the apoptosis of GC cells. MiR-29b-1-5p inhibitor increased levels of VSIG1, ZO-1 and E-cadherin, whilst decreasing levels of VE-cadherin, N-cadherin and Vimentin in vitro and in vivo, which however was partially reversed by shVSIG1. Downregulation of CAF-derived exosomal miR-29b-1-5p impeded GC tumorigenesis and VM structure in vivo by upregulating VSIG1/ZO-1 expression.Conclusion: Downregulation of CAF-derived exosomal miR-29b-1-5p inhibits GC progression via VSIG1/ZO-1 axis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Uniones Estrechas , Regulación hacia Abajo/genética , Apoptosis/genética , MicroARNs/genética , Dominios de Inmunoglobulinas , Proliferación Celular , Línea Celular Tumoral
4.
Front Immunol ; 12: 702615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322132

RESUMEN

Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan-Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.


Asunto(s)
Biomarcadores de Tumor/inmunología , Receptores CXCR4 , Neoplasias Gástricas/inmunología , Adulto , Biomarcadores de Tumor/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Transcriptoma
5.
Front Pharmacol ; 11: 514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425778

RESUMEN

Acetaminophen (APAP) overdose is the main cause of acute liver failure. Apigenin (API) is a natural dietary flavonol with high antioxidant capacity. Herein, we investigated protection by API against APAP-induced liver injury in mice, and explored the potential mechanism. Cell viability assays and mice were used to evaluate the effects of API against APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to determine the signalling pathways affected by API. Analysis of mouse serum levels of alanine/aspartate aminotransferase (ALT/AST), malondialdehyde (MDA), liver myeloperoxidase (MPO) activity, glutathione (GSH), and reactive oxygen species (ROS) revealed that API (80 mg/kg) owned protective effect on APAP-induced liver injury. Meanwhile, API ameliorated the decreased cell viability in L-02 cells incubated by APAP with a dose dependent. Furthermore, API promoted SIRT1 expression and deacetylated p53. Western blotting showed that API promoted APAP-induced autophagy, activated the NRF2 pathway, and inhibited the transcriptional activation of nuclear p65 in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 reduced protection by API against APAP-induced hepatotoxicity. Molecular docking results indicate potential interaction between API and SIRT1. API prevents APAP-induced liver injury by regulating the SIRT1-p53 axis, thereby promoting APAP-induced autophagy and ameliorating APAP-induced inflammatory responses and oxidative stress injury.

6.
Front Pharmacol ; 11: 162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184730

RESUMEN

Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure in clinical and hospital settings. Fisetin (FST) is a phenolic compound derived from natural products such as fruit and vegetables. Our research investigated the protective mechanisms of FST in APAP-induced hepatic injury in vitro and vivo. Assessment of mouse serum levels of alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) demonstrated the protective effects of FST toward APAP-induced liver injury. FST also reversed an APAP-induced decrease in mouse L-02 cell line viability. Our results also showed that FST significantly promoted APAP-induced autophagy and inhibited inflammasome activation both in vivo and in vitro. We also found that silencing ATG5, using si-ATG5, reduced the protective effects of FST against APAP-induced hepatotoxicity and reversed the effects on autophagy. Finally, we used the autophagy inhibitor, 3-methyladenine (3-MA) to validate the involvement of autophagy in FST against APAP-induced hepatotoxicity in vitro. We demonstrated that FST prevented APAP-induced hepatotoxicity by increasing ATG5 expression, thereby promoting autophagy and inhibiting inflammasome activation.

7.
Chem Biol Interact ; 291: 111-119, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29883724

RESUMEN

Alisol A 24-acetate (AA), a natural triterpenoid isolated from the traditional Chinese medicine Rhizoma Alismatis, has various therapeutic effects. We investigated the anti-nonalcoholic steatohepatitis (NASH) effect of AA and its underlying mechanisms in vitro and in vivo. C57BL/6 mice were fed a methionine and choline-deficient (MCD) diet for 4 weeks to induce NASH. The mice were simultaneously treated with a daily dose of AA (15, 30, and 60 mg kg-1, ig) for 4 weeks. On the last day, the animals were sacrificed and plasma and liver tissue were collected. Serum and liver tissue biochemical analyses and histological observation were performed. The human hepatic stellate cell line LX-2 was used to build NASH models by culturing with conditioned medium from WRL-68 liver cells after exposure to MCD medium in vitro. Liver oxidative stress and inflammatory indices and autophagy markers were examined. The results showed that AA suppressed reactive oxygen species (ROS) and inflammation in a NASH mouse model and inhibited the expression of inflammatory cytokines and ROS in LX-2 cells in MCD medium. Furthermore, we found AA stimulated autophagy in mice liver and LX-2, which could be the underlying mechanism of AA in NASH. To further investigate the role of autophagy in LX-2 cells, we found that AA regulated autophagy via the AMPK/mTOR/ULK1 pathway and dorsomorphin, a selective AMPK inhibitor, led to the suppression of AA-induced autophagy. Taken together, our results indicate that AA could be a possible therapy for NASH by inhibiting oxidative stress and stimulating autophagy.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Colestenonas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular , Colestenonas/química , Colestenonas/farmacología , Colina , Dieta , Modelos Animales de Enfermedad , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metionina/deficiencia , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/enzimología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA