Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biosens Bioelectron ; 260: 116460, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843769

RESUMEN

Neutrophils need to migrate through tight tissue spaces to eliminate pathogens, but their movement is often hindered by their large and stiff nuclei. Neutrophil migration is impaired in sepsis patients, but it is unclear whether this defect is related to the deformability of their nuclei. Herein, we designed microfluidic devices with micron-scale narrow slits to simulate biological barriers. This setup allowed us to observe and record neutrophil movement and nuclear deformation in real-time. We also developed a method for morphological analysis to quantify nucleus deformation in numerous individual cells. Our studies showed that neutrophils from healthy individuals could adjust their nuclear shape to squeeze through these constrictions, whereas those from sepsis patients demonstrated less flexibility. Neutrophils with rigid nuclei struggled to pass through narrow gaps and were more likely to rupture under pressure. These findings suggest that the migration defects of neutrophils observed in sepsis may be attributed to the inability of neutrophils to deform their nuclei, highlighting the crucial role of microfluidic technologies in offering new insights into migration defects under pathological conditions.


Asunto(s)
Movimiento Celular , Dispositivos Laboratorio en un Chip , Neutrófilos , Sepsis , Humanos , Neutrófilos/citología , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Núcleo Celular
2.
Angew Chem Int Ed Engl ; : e202409689, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872358

RESUMEN

Inverted NiOx-based perovskite solar cells (PSCs) exhibit considerable potential because of their low-temperature processing and outstanding excellent stability, while is challenged by the carriers transfer at buried interface owing to the inherent low carrier mobility and abundant surface defects that directly deteriorates the overall device fill factor. Present work demonstrates a chemical linker with the capability of simultaneously grasping NiOx and perovskite crystals by forming a Ni-S-Pb bridge at buried interface to significantly boost the carriers transfer, based on a rationally selected molecule of 1,3-dimethyl-benzoimidazol-2-thione (NCS). The constructed buried interface not only reduces the pinholes and needle-like residual PbI2 at the buried interface, but also deepens the work function and valence band maximum positions of NiOx, resulting in a smaller VBM offset between NiOx and perovskite film. Consequently, the modulated PSCs achieved a high fill factor up to 86.24%, which is as far as we know the highest value in records of NiOx-based inverted PSCs. The NCS custom-tailored PSCs and minimodules (active area of 18 cm2) exhibited a champion efficiency of 25.05% and 21.16%, respectively. The unencapsulated devices remains over 90% of their initial efficiency at maximum power point under continuous illumination for 1700 hours.

3.
Plant Physiol Biochem ; 211: 108684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710113

RESUMEN

Abscisic acid-, stress-, and ripening-induced (ASR) proteins in plants play a significant role in plant response to diverse abiotic stresses. However, the functions of ASR genes in maize remain unclear. In the present study, we identified a novel drought-induced ASR gene in maize (ZmASR1) and functionally characterized its role in mediating drought tolerance. The transcription of ZmASR1 was upregulated under drought stress and abscisic acid (ABA) treatment, and the ZmASR1 protein was observed to exhibit nuclear and cytoplasmic localization. Moreover, ZmASR1 knockout lines generated with the CRISPR-Cas9 system showed lower ROS accumulation, higher ABA content, and a higher degree of stomatal closure than wild-type plants, leading to higher drought tolerance. Transcriptome sequencing data indicated that the significantly differentially expressed genes in the drought treatment group were mainly enriched in ABA signal transduction, antioxidant defense, and photosynthetic pathway. Taken together, the findings suggest that ZmASR1 negatively regulates drought tolerance and represents a candidate gene for genetic manipulation of drought resistance in maize.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo
4.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727264

RESUMEN

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Asunto(s)
Activinas , Señalización del Calcio , Movimiento Celular , Células Asesinas Naturales , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Activinas/metabolismo , Activinas/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Materials (Basel) ; 17(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730860

RESUMEN

As an environmentally friendly natural polymer, citric acid-modified chitosan (CAMC) can effectively regulate the hydration and exothermic processes of cement-based materials. However, the influence of CAMC on the macroscopic properties of concrete and the optimal dosage are still unclear. This work systematically investigates the effects of CAMC on the mixing performance, mechanical properties, shrinkage performance, and durability of concrete. The results indicated that CAMC has a thickening effect and prolongs the setting time of concrete. CAMC has a negative impact on the early strength of concrete, but it is beneficial for the development of the subsequent strength of concrete. With the increase in CAMC content, the self-shrinkage rate of concrete samples decreased from 86.82 to 14.52 µÎµ. However, the CAMC-0.6% sample eventually expanded, with an expansion value of 78.49 µÎµ. Moreover, the long-term drying shrinkage rate was decreased from 551.46 to 401.94 µÎµ. Furthermore, low-dose CAMC can significantly reduce the diffusion coefficient of chloride ions, improve the impermeability and density of concrete, and thereby enhance the freeze-thaw cycle resistance of concrete.

6.
Angew Chem Int Ed Engl ; 63(24): e202403203, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38590293

RESUMEN

Nanozymes have demonstrated significant potential in combating malignant tumor proliferation through catalytic therapy. However, the therapeutic effect is often limited by insufficient catalytic performance. In this study, we propose the utilization of strain engineering in metallenes to fully expose the active regions due to their ultrathin nature. Here, we present the first report on a novel tensile strain-mediated local amorphous RhRu (la-RhRu) bimetallene with exceptional intrinsic photothermal effect and photo-enhanced multiple enzyme-like activities. Through geometric phase analysis, electron diffraction profile, and X-ray diffraction, it is revealed that crystalline-amorphous heterophase boundaries can generate approximately 2 % tensile strain in the bimetallene. The ultrathin structure and in-plane strain of the bimetallene induce an amplified strain effect. Both experimental and theoretical evidence support the notion that tensile strain promotes multiple enzyme-like activities. Functioning as a tumor microenvironment (TME)-responsive nanozyme, la-RhRu exhibits remarkable therapeutic efficacy both in vitro and in vivo. This work highlights the tremendous potential of atomic-scale tensile strain engineering strategy in enhancing tumor catalytic therapy.


Asunto(s)
Terapia Fototérmica , Humanos , Catálisis , Animales , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Resistencia a la Tracción , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos
7.
ACS Nano ; 18(12): 8694-8705, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466230

RESUMEN

Small-scale magnetic robots with fixed magnetizations have limited locomotion modes, restricting their applications in complex environments in vivo. Here we present a morphology-reconfigurable millirobot that can switch the locomotion modes locally by reprogramming its magnetizations during navigation, in response to distinct magnetic field patterns. By continuously switching its locomotion modes between the high-velocity rigid motion and high-adaptability soft actuation, the millirobot efficiently navigates in small lumens with intricate internal structures and complex surface topographies. As demonstrations, the millirobot performs multimodal locomotion including woodlouse-like rolling and flipping, sperm-like rotating, and snake-like gliding to negotiate different terrains, including the unrestricted channel and high platform, narrow channel, and solid-liquid interface, respectively. Finally, we demonstrate the drug delivery capability of the millirobot through the oviduct-mimicking phantom and ex vivo oviduct. The magnetization reprogramming strategy during navigation represents a promising approach for developing self-adaptive robots for performing complex tasks in vivo.


Asunto(s)
Oviductos , Semen , Masculino , Femenino , Humanos , Animales , Movimiento (Física) , Sistemas de Liberación de Medicamentos , Campos Magnéticos
8.
Front Neurol ; 15: 1309691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414554

RESUMEN

Background: Preoperative imaging for some unusual lesions in the sellar region can pose challenges in establishing a definitive diagnosis, impacting treatment strategies. Methods: This study is a retrospective analysis of eight cases involving unusual sellar region lesions, all treated with endoscopic endonasal transsphenoidal surgery (EETS). We present the clinical, endocrine, and radiological characteristics, along with the outcomes of these cases. Results: Among the eight cases, the lesions were identified as follows: Solitary fibrous tumor (SFT) in one case, Lymphocytic hypophysitis (LYH) in one case, Cavernous sinus hemangiomas (CSH) in one case, Ossifying fibroma (OF) in two cases; Sphenoid sinus mucocele (SSM) in one case, Pituitary abscess (PA) in two cases. All patients underwent successful EETS, and their diagnoses were confirmed through pathological examination. Postoperatively, all patients had uneventful recoveries without occurrences of diabetes insipidus or visual impairment. Conclusion: Our study retrospectively analyzed eight unusual lesions of the sellar region. Some lesions exhibit specific imaging characteristics and clinical details that can aid in preoperative diagnosis and inform treatment strategies for these unusual sellar diseases.

9.
Nanoscale ; 16(2): 624-634, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38086673

RESUMEN

Cancer cells disseminate through the bloodstream, leading to metastasis in distant sites within the body. One promising strategy to prevent metastasis is to eliminate circulating tumor cells. However, this remains challenging due to the lack of an active and targeted biomedical tool for efficient cancer cell elimination. Here, we developed a magnetic microrobot by using natural materials derived from the extracellular matrix (ECM) to mimic the ligand-receptor interaction between cancer cells and the ECM, offering targeted elimination of cancer cells. The ECM-mimicking microrobot is designed with a biodegradable hydrogel matrix, incorporating a cancer cell ligand and magnetic microparticles for cancer cell capture and active locomotion. This microrobot was fabricated based on an interface-shearing method, enabling controllable magnetic response and size scalability (30 µm-500 µm). The presented ECM-mimicking microrobot can actively approach and capture single cancer cells and cell clusters under the control of specific magnetic fields. The experiment was conducted in a blood vessel-mimicking simulator. The microrobot demonstrates an outstanding elimination efficacy of 92.3% on MDA-MB-231 cancer cells and a stable transport capability of the captured cells over long distances to a designed recycling site, inhibiting cell metastasis. This magnetic ECM-mimicking microrobot based on a bioinspired binding mechanism represents a promising candidate for the efficient elimination of cancer cells and other biological waste in the blood.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Ligandos , Matriz Extracelular/patología , Magnetismo , Campos Magnéticos
10.
J Pharmacol Exp Ther ; 389(2): 197-207, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37918858

RESUMEN

Paclitaxel (PTX) is capable of aggravating radiation-induced pulmonary fibrosis (RIPF), but the mechanism is unknown. Spry2 is a negative regulator of receptor tyrosine kinase-related Ras/Raf/extracellular signal regulated kinase (ERK) pathway. This experiment was aimed at exploring whether the aggravation of RIPF by PTX is related to Spry2. The RIPF model was established with C57BL/6 mice by thoracic irradiation, and PTX was administered concurrently. Western blot was used to detect the expression level of ERK signaling molecules and the distribution of Spry2 in the plasma membrane/cytoplasm. Co-immunoprecipitation (co-IP) and immunofluorescence were used to observe the colocalization of Spry2 with the plasma membrane and tubulin. The results showed that PTX-concurrent radiotherapy could aggravate fibrotic lesions in RIPF, downregulate the content of membrane Spry2, and upregulate the levels of p-c-Raf and p-ERK in lung tissue. It was found that knockdown of Spry2 in fibroblast abolished the upregulation of p-c-Raf and p-ERK by PTX. Both co-IP results and immunofluorescence staining showed that PTX increased the binding of Spry2 to tubulin, and microtubule depolymerizing agents could abolish PTX's inhibition of Spry2 membrane distribution and inhibit PTX's upregulation of Raf/ERK signaling. Both nintedanib and ERK inhibitor were effective in relieving PTX-exacerbated RIPF. Taken together, the mechanism of PTX's aggravating RIPF was related to its ability to enhance Spry2's binding to tubulin, thus attenuating Spry2's negative regulation on Raf/ERK pathway. SIGNIFICANCE STATEMENT: This study revealed that paclitaxel (PTX) concurrent radiation therapy exacerbates radiation-induced pulmonary fibrosis during the treatment of thoracic tumors, which is associated with PTX restraining Spry2 and upregulating the Raf/extracellular signal regulated kinase signaling pathway, and provided drug targets for mitigating this complication.

11.
Int J Radiat Oncol Biol Phys ; 118(1): 218-230, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586613

RESUMEN

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a common side effect of radiation therapy for thoracic tumors without effective prevention and treatment methods at present. The aim of this study was to explore whether glycyrrhetinic acid (GA) has a protective effect on RIPF and the underlying mechanism. METHODS AND MATERIALS: A RIPF mouse model administered GA was used to determine the effect of GA on RIPF. The cocultivation of regulatory T (Treg) cells with mouse lung epithelial-12 cells or mouse embryonic fibroblasts and intervention with GA or transforming growth factor-ß1 (TGF-ß1) inhibitor to block TGF-ß1 was conducted to study the mechanism by which GA alleviates RIPF. Furthermore, injection of Treg cells into GA-treated RIPF mice to upregulate TGF-ß1 levels was performed to verify the roles of TGF-ß1 and Treg cells. RESULTS: GA intervention improved the damage to lung tissue structure and collagen deposition and inhibited Treg cell infiltration, TGF-ß1 levels, epithelial mesenchymal transition (EMT), and myofibroblast (MFB) transformation in mice after irradiation. Treg cell-induced EMT and MFB transformation in vitro were prevented by GA, as well as a TGF-ß1 inhibitor, by decreasing TGF-ß1. Furthermore, reinfusion of Treg cells upregulated TGF-ß1 levels and exacerbated RIPF in GA-treated RIPF mice. CONCLUSIONS: GA can improve RIPF in mice, and the corresponding mechanisms may be related to the inhibition of TGF-ß1 secreted by Treg cells to induce EMT and MFB transformation. Therefore, GA may be a promising therapeutic candidate for the clinical treatment of RIPF.


Asunto(s)
Ácido Glicirretínico , Lesión Pulmonar , Fibrosis Pulmonar , Traumatismos por Radiación , Animales , Ratones , Transición Epitelial-Mesenquimal , Fibroblastos/efectos de la radiación , Ácido Glicirretínico/farmacología , Pulmón/efectos de la radiación , Lesión Pulmonar/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/prevención & control , Traumatismos por Radiación/patología , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta1
12.
Oncol Lett ; 26(6): 505, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37920432

RESUMEN

Solitary fibrous tumor (SFT) of the central nervous system is a rare fibroblastic tumor of mesenchymal origin. SFTs in the saddle area are much less common. In January 2022, a 43-year-old female patient was admitted with SFT 3 months following partial resection of a microscopic transsphenoidal saddle area tumor at a different hospital. Magnetic resonance imaging indicated that the unresected part of the tumor was significantly enhanced on T1 enhancement, which strongly indicated a recurrence. Subsequently, the patient underwent transnasal endoscopic saddle area tumor resection at our hospital and the tumor was successfully removed. By using postoperative pathology examination, immunohistochemical analysis of Bcl-2, cluster of differentiation 99, STAT6 and vimentin, and a fusion gene test performed by high-throughput sequencing technology, the SFT was definitively diagnosed. Following 3 months of follow-up, the patient was found to have tumor recurrence in the cavernous sinus and absence of tumor growth in the pituitary fossa. Therefore, the patient received proton therapy and tumor growth was controlled effectively.

13.
Nanomicro Lett ; 16(1): 4, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930457

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2RR) involves a variety of intermediates with highly correlated reaction and ad-desorption energies, hindering optimization of the catalytic activity. For example, increasing the binding of the *COOH to the active site will generally increase the *CO desorption energy. Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO2RR, but remains an unsolved challenge. Herein, we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier. This system shows an unprecedented CO2RR intrinsic activity with TOF of 3336 h-1, high selectivity toward CO production, Faradaic efficiency of 95.96% at - 0.60 V and excellent stability. Theoretical calculations show that the Mo-Fe diatomic sites increased the *COOH intermediate adsorption energy by bridging adsorption of *COOH intermediates. At the same time, d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of *CO intermediates. Thus, the undesirable correlation between these steps is broken. This work provides a promising approach, specifically the use of di-atoms, for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.

14.
Front Neurol ; 14: 1236757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869148

RESUMEN

Introduction: Posterior communicating artery (Pcom) aneurysm has unique morphological characteristics and a high recurrence risk after coil embolization. This study aimed to evaluate the relationship between the recurrence-related morphology characteristics and hemodynamics. Method: A total of 20 patients with 22 Pcom aneurysms from 2019 to 2022 were retrospectively enrolled. The recurrence-related morphology parameters were measured. The hemodynamic parameters were simulated based on finite element analysis and computational fluid dynamics. The hemodynamic differences before and after treatment caused by different morphological features and the correlation between these parameters were analyzed. Result: Significant greater postoperative inflow rate at the neck (Qinflow), relative Qinflow, inflow concentration index (ICI), and residual flow volume (RFV) were reported in the aneurysms with wide neck (>4 mm). Significant greater postoperative RFV were reported in the aneurysms with large size (>7 mm). Significant greater postoperative Qinflow, relative Qinflow, and ICI were reported in the aneurysms located on the larteral side of the curve. The bending angle of the internal carotid artery at the initiation of Pcom (αICA@PCOM) and neck diameter had moderate positive correlations with Qinflow, relative Qinflow, ICI, and RFV. Conclusion: The morphological factors, including aneurysm size, neck diameter, and αICA@PCOM, are correlated with the recurrence-inducing hemodynamic characteristics even after fully packing. This provides a theoretical basis for evaluating the risk of aneurysm recurrence and a reference for selecting a surgical plan.

15.
Nano Lett ; 23(20): 9555-9562, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37787483

RESUMEN

The effective design and construction of high-performance methanol oxidation reaction (MOR) electrocatalysts are significant for the development of direct methanol fuel cells. But the active sites of the MOR electrocatalysts are susceptible to being poisoned by CO, resulting in poor durability. Herein, we report an atomically dispersed CrOX species anchored on Pd metallene through bridging O atoms. This catalyst shows an outstanding MOR performance with 7 times higher mass activity and 100 mV lower CO electrooxidation potential than commercial Pd/C. The results of operando electrochemical Fourier transform infrared spectroscopy demonstrate the rapid removal of CO* on CrOX-Pd metallene. Theoretical calculations reveal that atomically dispersed CrOX can lower the adsorption energy of CO* on Pd sites and enhance that of OH* through the formation of a hydrogen bond, decreasing the formation energy of COOH*. This work provides a new strategy for improving MOR performance via atomically engineering oxide/metal interfaces.

16.
Microsyst Nanoeng ; 9: 111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705925

RESUMEN

Reconfigurable modular microfluidics presents an opportunity for flexibly constructing prototypes of advanced microfluidic systems. Nevertheless, the strategy of directly integrating modules cannot easily fulfill the requirements of common applications, e.g., the incorporation of materials with biochemical compatibility and optical transparency and the execution of small batch production of disposable chips for laboratory trials and initial tests. Here, we propose a manufacturing scheme inspired by the movable type printing technique to realize 3D free-assembly modular microfluidics. Double-layer 3D microfluidic structures can be produced by replicating the assembled molds. A library of modularized molds is presented for flow control, droplet generation and manipulation and cell trapping and coculture. In addition, a variety of modularized attachments, including valves, light sources and microscopic cameras, have been developed with the capability to be mounted onto chips on demand. Microfluidic systems, including those for concentration gradient generation, droplet-based microfluidics, cell trapping and drug screening, are demonstrated. This scheme enables rapid prototyping of microfluidic systems and construction of on-chip research platforms, with the intent of achieving high efficiency of proof-of-concept tests and small batch manufacturing.

17.
Micromachines (Basel) ; 14(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37763903

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a persistent and progressive respiratory disorder characterized by expiratory airflow limitation caused by chronic inflammation. Evidence has shown that COPD is correlated with neutrophil chemotaxis towards the airways, resulting in neutrophilic airway inflammation. This study aimed to evaluate neutrophil chemotaxis in bronchoalveolar lavage fluid (BALF) from COPD patients using a high-throughput nine-unit microfluidic platform and explore the possible correlations between neutrophil migratory dynamics and COPD development. The results showed that BALF from COPD patients induced stronger neutrophil chemotaxis than the Control BALF. Our results also showed that the chemotactic migration of neutrophils isolated from the blood of COPD patients was not significantly different from neutrophils from healthy controls, and neutrophil migration in three known chemoattractants (fMLP, IL-8, and LTB4) was not affected by glucocorticoid treatment. Moreover, comparison with clinical data showed a trend of a negative relationship between neutrophil migration chemotactic index (C. I.) in COPD BALF and patient's spirometry data, suggesting a potential correlation between neutrophil migration and the severity of COPD. The present study demonstrated the feasibility of using the microfluidic platform to assess neutrophil chemotaxis in COPD pathogenesis, and it may serve as a potential marker for COPD evaluation in the future.

18.
Metabolites ; 13(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37233679

RESUMEN

Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.

19.
J Cell Mol Med ; 27(1): 127-140, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528873

RESUMEN

Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.


Asunto(s)
Movimiento Celular , Endometrio , Folistatina , Sistema de Señalización de MAP Quinasas , Animales , Femenino , Ratones , Embarazo , Movimiento Celular/fisiología , Hormona Folículo Estimulante/metabolismo , Folistatina/genética , Folistatina/metabolismo , Células del Estroma/metabolismo , Útero/metabolismo , Endometrio/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología
20.
Plant Cell Rep ; 42(3): 521-533, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36585973

RESUMEN

KEY MESSAGE: Overexpression in Arabidopsis of the maize shikimate kinase-like genes SKL1 and SKL2 enhances tolerance to drought stress. The shikimate pathway has been reported to play an important role in plant signaling, reproduction, and development. However, its role in abiotic stress has not yet been reported. Here, two shikimate kinase-like genes, SKL1 and SKL2, were cloned from maize and their functions in mediating drought tolerance were investigated. Transcript levels of ZmSKL1 and ZmSKL2 in roots and leaves were strongly induced by drought stress. Both proteins were localized in the chloroplast. Furthermore, compared to the wild-type, transgenic Arabidopsis plants overexpressing ZmSKL1 or ZmSKL2 exhibited improved drought stress tolerance through increases in relative water content and stomatal closure. Additionally, the transgenic lines showed reduced accumulation of reactive oxygen species as a results of increased antioxidant enzyme activity. Interestingly, overexpression of ZmSKL1 or ZmSKL2 also increased sensitivity to exogenous abscisic acid. In addition, the ROS-related and stress-responsive genes were activated in transgenic lines under drought stress. Moreover, ZmSKL1 and ZmSKL2 were found to separately interact with ZmASR3, which is an important regulatory protein in mediating drought tolerance, suggesting that ZmSKL1 and ZmSKL2, together with ZmASR3, are proteins that may confer drought tolerance as candidates in plant genetic breeding manipulations.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/farmacología , Antioxidantes/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA