RESUMEN
As a simulant of hazardous 226Ra2+, the simultaneously selective and rapid elimination of radioactive 133Ba2+ ions from geothermal water is necessary but still challenging. In this paper, we demonstrated the usability of a layered thiostannate with facile synthesis and inexpensive cost, namely, K2xSn4-xS8-x (KTS-3, x = 0.65-1), for the remediation of radioactive 133Ba2+ in multiple conditions, including sorption isotherm, kinetics, and the influences of competitive inorganic/organic ions, pH values, and dosages. KTS-3 has a strong barium uptake ability (171.3 mg/g) and an ultrafast adsorption kinetics (about 2 min). Impressively, it can achieve a high preference for barium regardless of the excessive interference ions (Na+, K+, Mg2+, Ca2+, and humic acid) and acidic/alkaline environments, with the largest distribution coefficient Kd value reaching 6.89 × 105 mL/g. Also, the Ba2+-laden products can be easily eluted by a concentrated KCl solution, and its adsorption performances for barium resist well even after five consecutive cycles. In addition, owing to the regular appearance and excellent mechanical strength, the prepared KTS-3/PAN (PAN = polyacrylonitrile) granule displays a good removal efficiency in the flowing ion-exchange column. These advantages mentioned above render it very promising for the effective and efficient cleanup of radioactive 133Ba2+-contaminated wastewater.
RESUMEN
Pursuits of new types of Pb-free heterometallic halides adequate for photovoltaic applications are still urgent but challenging. In this study, by using in situ-produced [(Me)2-(DABCO)]2+ (DABCO = 1,4-diazabicyclo[2.2.2]octane; Me = methyl) cations as structure-directing agents, we successfully constructed a non-perovskite copper iodobismuthate hybrid, namely [(Me)2-(DABCO)]2Cu2Bi2I12 (1), which features discrete [Cu2Bi2I12]4- anionic moieties formed by the building units of [CuI4] tetrahedra and [BiI6] octahedra. UV-Vis diffuse reflectance analyses showed that compound 1 possesses semiconductive behaviors with a narrow optical bandgap of 1.80 eV. More importantly, it exhibits excellent photoelectric switching abilities, and its photocurrent density (2.30 µA cm-2) far exceeds those of some high-performance halide-based counterparts. Different from many heterometallic analogues, noteworthily, it also has dispersive band structure and strong electronic coupling near the Fermi level, resulting in a material with small effective masses that may be responsible for the good photoelectricity. This study may offer new guidance for the design and synthesis of eco-friendly heterometallic halides with unique structures and desirable properties.
RESUMEN
OBJECTIVE: To observe the effect of acupuncture therapy based on "gut-brain axis" on clinical manifestations and gastrointestinal symptoms of children with autism spectrum disorder (ASD). METHODS: A total of 66 children with ASD were randomly divided into an observation group and a control group, 33 cases in each group. The control group was treated by routine rehabilitation training. On the basis of the control group, the observation group was treated with acupuncture based on "gut-brain axis", and the acupoints were Touwei (ST 8), Shenting (GV 24), Sishencong (EX-HN 1), Tianshu (ST 25), Zhongwan (CV 12), Zusanli (ST 36), etc. Both treatments were given once every other day, 3 times a week, 4 weeks as a course of treatment, consecutively for 3 courses. The scores of autism behavior checklist (ABC), TCM symptoms of gastrointestinal disease and childhood autism rating scale (CARS) were compared between the two groups before and after treatment, and the clinical efficacy was evaluated. RESULTS: After treatment, the scores of ABC, CARS and TCM symptoms of gastrointestinal disease in the two groups were lower than before treatment (P<0.05), and those in the observation group were lower than the control group (P<0.05). The total effective rate of the observation group was 90.9% (30/33), which was higher than 81.8% (27/33) in the control group (P<0.05). CONCLUSION: On the basis of routine rehabilitation training, acupuncture therapy based on "gut-brain axis" is effective in treating ASD, which can relieve the clinical manifestations and gastrointestinal symptoms.
Asunto(s)
Terapia por Acupuntura , Trastorno del Espectro Autista , Enfermedades Gastrointestinales , Niño , Humanos , Trastorno del Espectro Autista/terapia , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/terapiaRESUMEN
OBJECTIVE: To explore infection rate of different adeno-associated virus (AAV) on knee joint cartilage in mice and to find a good gene editing tool for mice chondrocytes of knee joint. METHODS: Forty-five 4-week-old SPF C57BL/6 weighed(14.3±0.2) g were selected. According to different injections(6 µl) for right knee joint, mice were divided into 9 different groups, 5 mice in each group. The groups were such as following:control group (normal saline), Vigene 2 group (AAV2 from vigene biosciences, titer for 1×10¹³ vg/ml), Vigene 5 group (AAV5 from vigene biosciences, titer for 1×10¹³ vg/ml), Vigene 6 group (AAV6 from vigene biosciences, titer for 1×10¹³ vg/ml), Vigene 7 group (AAV7 from vigene biosciences, titer for 1×10¹³ vg/ml), Vigene 8 group (AAV8 from vigene biosciences, titer for 1×10¹³ vg/ml), Vigene 9 group (AAV9 from vigene biosciences, titer for 1×10¹³ vg/ml), Hanbio DJ group(AAV2-DJ from Hanbio, titer for 1×10¹² vg/ml), Hanbio 5 group (AAV5 from Hanbio, titer for 1×10¹² vg/ml). All AAVs were over-expressed green fluorescent protein(GFP). Knee joint specimens were taken and observed injury of cartilage under stereomicroscope at 30 days after injection, then 10 µm thick frozen sections were prepared. Distribution of green fluorescent protein of meniscus and cartilage of knee joint was observed under fluorescence microscope. RESULTS: Stereomicroscope observation indicated that no obvious lesion was observed in knee joint cartilage of mice after intra-articular injection of AAV. According to frozen sections of knee joints, strong green fluorescence was observed in knee joint cartilage in all AAV experimental groups. Compared with other groups, significantly stronger green fluorescence were observed both in AAV2 and AAV7 groups, whose average fluorescence density was 0.077±0.020 and 0.061±0.022. There were significant differences between two groups and other groups. CONCLUSIONS: AAV could infect chondrocyte of knee joint in vivo by injecting into knee joint cavity. Higher infection efficiency of AAV2 and AAV7 on knee joint cartilage were observed. Local injection of AAV into knee joint cavity could be used as an effective tool for gene editing of knee joint chondrocyte.
Asunto(s)
Dependovirus , Articulación de la Rodilla , Animales , Cartílago , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BLRESUMEN
Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm-3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.
RESUMEN
Energetic materials (explosives, propellants, and pyrotechnics) are used extensively for both civilian and military applications and the development of such materials, particularly in the case of energetic salts, is subject to continuous research efforts all over the world. This Review concerns recent advances in the syntheses, properties, and potential applications of ionic salts based on tetrazole N-oxide. Most of these salts exhibit excellent characteristics and can be classified as a new family of highly energetic materials with increased density and performance, alongside decreased mechanical sensitivity. Additionally, novel tetrazole N-oxide salts are proposed based on a diverse array of functional groups and ions pairs, which may be promising candidates for new energetic materials.
RESUMEN
Energetic mono- and dicationic 3,4-diaminotriazolium salts have been prepared by combining stoichiometric amounts (1:1 or 2:1 molar ratio) of 3,4-diaminotriazole with various oxygen-containing tetrazoles, and the structures have been confirmed by single-crystal XRD for the first time. All structures are dominated by a strong hydrogen-bond network owing to both amino groups and oxygen in the molecule. All salts, except 7, exhibit excellent thermal stabilities with decomposition temperatures over 200 °C. Based on experimental densities and theoretical calculations carried out by using the Gaussianâ 03 suite of programs, all salts have calculated detonation pressures (20.3-33.9â GPa) and velocities (7095-8642â m s(-1)).