Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177647

RESUMEN

In this work, a self-healable, high-stability anode material for rechargeable magnesium batteries (RMBs) has been developed by introducing a core-shell structure of Ga confined by reduced graphene oxide (Ga@rGO). Via this Ga@rGO anode, a specific capacity of 150 mAh g-1 at a current of 0.5 A g-1 stable up to 1200 cycles at room temperature and a specific capacity of 100 mAh g-1 under an ultrahigh current of 1 A g-1 stable up to 700 cycles at a slightly elevated temperature of 40 °C have been achieved. Additionally, the ultrahigh rate, high-cycling stability, and long-cycle life of the anode are attributed to the stabilized structure; such a low-cost, simple, and environmentally friendly direct drop coating (DDC) method is developed to maximize the original state of the active materials. Remarkably, the self-healing ability of anodes is still presented under the ultrahigh charging current. This anode is promising for the development of high rate and high stability RMBs.

2.
Nat Commun ; 15(1): 7038, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147846

RESUMEN

Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.

3.
Small ; : e2404689, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115098

RESUMEN

Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials.

4.
Nat Commun ; 15(1): 6669, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107324

RESUMEN

The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.

5.
Lancet Reg Health West Pac ; 48: 101067, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119238

RESUMEN

Background: The use of real-time continuous glucose monitoring (rtCGM) technology remains largely investigational in the hospital setting. The current study aimed to evaluate the effectiveness of rtCGM in inpatients with diabetes who were treated with short-term continuous subcutaneous insulin infusion (CSII). Methods: In this randomized, parallel controlled trial conducted on the endocrinology wards in a tertiary hospital located in Shanghai, adults with type 1 and type 2 diabetes who required short-term CSII during hospitalization were randomly assigned (1:1) to receive either rtCGM-based glucose monitoring and management program or point-of-care (POC) standard of care (8 times/day) with blinded CGM. Primary outcome measure was the difference in the percentage of time within the target glucose range of 3.9-10 mmol/L (TIR, %). This study was registered at www.chictr.org.cn (ChiCTR2300068933). Findings: Among the 475 randomized participants (237 in the rtCGM group and 238 in the POC group), the mean age of was 60 ± 13 years, and the mean baseline glycated hemoglobin level was 9.4 ± 1.8%. The CGM-recorded mean TIR was 71.1 ± 15.8% in the rtCGM group and 62.9 ± 18.9% in the POC group, with a mean difference of 8.2% (95% confidence interval [CI]: 5.1-11.4%, P < 0.001). The mean time above range >10 mmol/L was significantly lower in the rtCGM group than in the POC group (28.3 ± 15.8% vs. 36.6 ± 19.0%, P < 0.001), whereas there was no significant between-group difference in the time below range <3.9 mmol/L (P = 0.11). Moreover, the time to reach target glucose was significantly shorter in the rtCGM group than in the POC group (2.0 [1.0-4.0] days vs. 4.0 [2.0-5.0] days, P < 0.001). There were no serious adverse events in both groups. Interpretation: In patients with diabetes who received short-term CSII during hospitalization, the rtCGM program resulted in better glucose control than the POC standard of care, without increasing the risk of hypoglycemia. Funding: The Program of Shanghai Academic Research Leader (22XD1402300), Shanghai Oriental Talent Program (Youth Project) (No. NA), the Shanghai "Rising Stars of Medical Talent" Youth Development Program-Outstanding Youth Medical Talents (SHWSRS(2021)_099), and the Shanghai Research Center for Endocrine and Metabolic Diseases (2022ZZ01002).

6.
Eur J Med Res ; 29(1): 356, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970130

RESUMEN

BACKGROUND: To date, multiple cases of adverse reactions to COVID-19 vaccines have been reported worldwide. Alopecia areata (AA) is an uncommon type of adverse reaction reported in some articles and has a significant social and psychological impact on patients. Our study aimed to review the AA and COVID-19 vaccine literature. METHODS: This systematic review was conducted by searching for articles on AA following COVID-19 vaccines in international databases such as Embase, MEDLINE, PubMed, Web of Knowledge, and Ovid from December 2019 to December 30, 2023. We included studies that provided data for AA patients following COVID-19 vaccination with at least one dose. Data on sex, age, country/region of origin, vaccine type, days between vaccination and symptom presentation, manifestations of AA, trichoscopy and histopathological findings, treatment, and outcomes were included. RESULTS: In total, 579 explored studies were identified and assessed, and 25 articles with a total of 51 patients were included in the review. Twenty-seven (52.9%) patients developed new-onset AA following receiving the COVID-19 vaccine, and AA recurrence or exacerbation occurred after receiving the COVID-19 vaccine in 24 (47.1%) patients with preexisting disease. Five vaccines were reported to cause AA in all cases. The Pfizer vaccine (45.1%) was the most frequently reported, followed by the ChAdOx1 nCoV-19 vaccine (27.5%), Moderna mRNA-1273 (19.6%), Sinopharm (3.9%) and SinoVac (3.9%). AA occurred most frequently within one month after the 1st dose, and then, the incidence decreased gradually with time. Topical or systemic corticosteroids were used in 38 patients. Eleven patients were treated with a Janus Kinase inhibitor (jakinib) inhibitor, eight with tofacitinib, and three with an unspecified jakinib. However, 3 of the 11 patients experienced exacerbations after treatment. CONCLUSION: AA after COVID-19 vaccination is rare, and physicians should be aware of this phenomenon to improve early diagnosis and appropriate treatment.


Asunto(s)
Alopecia Areata , Vacunas contra la COVID-19 , COVID-19 , Humanos , Alopecia Areata/inducido químicamente , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2/inmunología , Masculino , Femenino
7.
Int J Ophthalmol ; 17(7): 1248-1254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026914

RESUMEN

AIM: To report a one-year clinical outcomes of low-dose laser cycloplasty (LCP) among malignant glaucoma patients. METHODS: In this prospective, multicenter, non-comparative clinical study, participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China. Patients were followed up at 1wk, 1, 3, 6, and 12mo. Intraocular pressure (IOP), number of glaucoma medications, anterior chamber depth (ACD), and complications were recorded. Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy. Recurrence was defined by the presence of a shallow or flat anterior chamber after initial recovery from treatment. RESULTS: A total of 34 eyes received LCP. Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg (P<0.001) with 2.9±1.6 medications (P=0.046) at 1d, and 17.4±6.7 mm Hg (P<0.001) with 1.3±1.7 medications (P<0.001) at 12mo. The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo, respectively. A total of 32 (94.1%) eyes achieved initial anatomical success. During follow-up, 2 (5.9%) eyes failed and 8 (23.5%) eyes relapsed, yielding a 12-month anatomical success rate of 64.3%. Complications including anterior synechia (8.82%), choroidal/ciliary detachment (5.88%) and hypopyon (2.94%) were observed within 1wk. CONCLUSION: LCP is simple, safe, and effective in reforming the anterior chamber in malignant glaucoma.

8.
Sci Data ; 11(1): 725, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956385

RESUMEN

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Análisis de la Célula Individual , Teratoma , Humanos , Teratoma/genética , Teratoma/patología , Células Madre Pluripotentes/metabolismo , Linaje de la Célula , Factores de Transcripción/genética
9.
Small ; : e2404595, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966880

RESUMEN

Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm-2 at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm-2 on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.

10.
Exp Cell Res ; 441(1): 114167, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004202

RESUMEN

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH + NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Células Madre Neoplásicas , Retinal-Deshidrogenasa , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Proliferación Celular/genética , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Fibrosarcoma/patología , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Progresión de la Enfermedad , Ratones , Animales
11.
J Am Chem Soc ; 146(32): 22590-22599, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082835

RESUMEN

Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm-2 for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h-1). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.

12.
Mar Pollut Bull ; 206: 116731, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067233

RESUMEN

Oil and gas activities are sources of marine microplastics (MPs) but have received less attention globally. This study assessed the distribution characteristics and ecological risks of MPs in 31 sediment samples and effluent samples of 5 oil and gas platforms related to offshore oil and gas activities in the Bohai Sea. The results showed that the mean abundance of MPs in sediment, produced water, and domestic sewage was 205.7 ± 151.5 items/kg d.w., 18 ± 11 items/L, and 26 ± 39 items/L, respectively. The MPs in sediments and effluents were dominated by transparent, rayon, and fibers <1 mm. Oil and gas activities may influence the abundance of MPs in the sediments. The sediments in the area were at a low level of risk, but some samples exhibited indexes beyond low levels. The mass of MPs carried by the effluents from oil and gas platforms in the Bohai Sea was less than that of other sources.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Microplásticos/análisis , Medición de Riesgo , Industria del Petróleo y Gas , Yacimiento de Petróleo y Gas , Océanos y Mares
13.
J Nephrol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031241

RESUMEN

BACKGROUND: Urine sediment examination is a time-tested and non-invasive diagnostic tool. This study investigated the characteristics of urine sediment and its association with severity and renal outcomes in diabetic nephropathy (DN) patients. METHODS: A total of 201 biopsy-proven diabetic nephropathy patients (according to the pathological classification of diabetic nephropathy proposed by the Renal Pathology Society in 2010) who underwent manual urine sediment microscopic examination were included. We compared the clinicopathological characteristics of diabetic nephropathy patients with and without urinary renal tubular epithelial cells (RTECs) or renal tubular epithelial cell casts. The predictive value of urinary renal tubular epithelial cells or renal tubular epithelial cell casts for renal outcomes in diabetic nephropathy was analyzed. RESULTS: Fifty of 201 (24.9%) diabetic nephropathy patients had renal tubular epithelial cells or renal tubular epithelial cell casts in urine sediment. Diabetic nephropathy patients with renal tubular epithelial cells or renal tubular epithelial cell casts in urine sediment had a significantly higher level of proteinuria [6.0 (3.1, 9.7) vs. 3.6 (1.8, 6.8) g/24 h, p = 0.001], higher serum creatinine [227.9 (151.6, 338.1) vs. 177.0 (104.4, 288.4) µmol/L, p = 0.016] and lower estimated glomerular filtration rate (eGFR) [25.8 (15.8, 44.8) vs. 35.7 (19.9, 65.0) mL/min/1.73 m2, p = 0.025] than those without. Cox regression analysis demonstrated that the presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts was independently associated with the development of end-stage kidney disease (ESKD) in diabetic nephropathy patients [HR 1.670, 95% CI (1.042, 2.676), p = 0.033]. Adding the presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts to the predictive model could improve the effectiveness of the model for predicting the risk of ESKD within one year after renal biopsy. CONCLUSIONS: The presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts was associated with more severe kidney injury and worse renal outcomes in patients with diabetic nephropathy, thus perhaps providing a noninvasive biomarker for predicting diabetic nephropathy.

14.
Sci Rep ; 14(1): 17253, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060358

RESUMEN

As we know, valley-Hall kink states or pseudospin helical edge states are excited by polarized-momentum-locking [left-handed circular polarization (LCP) and right-handed circular polarization (RCP)] because the valley-Hall kink modes or pseudospin polarized modes have intrinsic and local chirality, which is difficult for these states to achieve phase modulation. Here we theoretically design and study a compatible topological photonic system with coexistence of photonic quantum Hall phase and pseudospin Hall phase, which is composed of gyromagnetic photonic crystals with a deformed honeycomb lattice containing six cylinders. A typical kind of hybrid topological waveguide states with pseudospin-characteristic, magnetic field-dependent, and strong robustness against backscattering and perfect electric conductor (PEC) is realized in the present system. Furthermore, we re-design a structure with intersection-liked, achieve splitting for one-way pseudospin quantum Hall edge states by using phase modulation. Robustness of the one-way pseudospin-quantum Hall edge states in splitting has been demonstrated as well. Additionally, PEC inserted in transport channel brings optical path difference in waveguide transmission, which would influence splitting for hybrid topological waveguide states in phase difference modulation. This work not only provides a new way for manipulation (i.e., phase modulation) of hybrid topological waveguide states in compatible topological photonic system from distinct topological classes but also has potential in various applications, such as sensing, signal processing, and on-chip communications.

15.
ACS Biomater Sci Eng ; 10(8): 5057-5067, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38950519

RESUMEN

Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn2Sr(PO4)2) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and in vitro cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an in vivo bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.


Asunto(s)
Regeneración Ósea , Ácido Gálico , Gelatina , Hidrogeles , Osteogénesis , Ácido Gálico/química , Ácido Gálico/farmacología , Regeneración Ósea/efectos de los fármacos , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Osteogénesis/efectos de los fármacos , Fosfatos/química , Fosfatos/farmacología , Estroncio/química , Estroncio/farmacología , Zinc/química , Zinc/farmacología , Ratones , Humanos , Huesos/efectos de los fármacos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
16.
J Inflamm Res ; 17: 4957-4973, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077373

RESUMEN

Purpose: Acute ischemic stroke (AIS) has seriously threatened people's health worldwide and there is an urge need for early diagnosis and effective treatment of AIS. This research intended to clarify the regulatory role of circ_0008146/miR-342-5p/ACSL4 axis in AIS. Methods: High-throughput small RNA sequencing analysis was adapted to identify differentially expressed miRNAs between the AIS and control group. The circ_0008146, miR-342-5p, and ACSL4 levels were detected by qRT-PCR. Middle cerebral artery occlusion/reperfusion (MCAO/R) models were constructed in C57BL/6J mice. Assay kits were used to determine Fe2+ levels and a battery of oxidative stress and lipid peroxidation indicators, including ROS, MDA, LPO, SOD and GSH/GSSG ratio. The protein levels of ACSL4 were measured by Western blot. The behavioral function was assessed using neurobehavioral tests. TTC staining was employed to visualize infarction size. Nissl staining was adapted to detect histopathological changes. Receiver operating characteristic curve and correlation analysis were applied to investigate the clinical value and association of miR-342-5p and ACSL4. Results: A total of 44 AIS patients and 49 healthy controls were enrolled in our study. The small RNA sequencing unveiled a significant decrease in miR-342-5p levels in AIS patients. MiR-342-5p inhibited oxidative stress and RSL3-induced ferroptosis after cerebral ischemic/reperfusion injury in vivo by targeting ferroptosis-related gene ACSL4. Circ_0008146 acted as a sponge of miR-342-5p, and overexpression of circ_0008146 increased neurological deficits and brain injury in mice. Circ_0008146 contributed to ferroptosis in cerebral infarction via sponging miR-342-5p to regulate ACSL4. Plasma miR-342-5p and ACSL4 demonstrated significant correlation and good diagnostic value for AIS patients. Conclusion: This study provides the first in vivo evidence to show that circ_0008146 exacerbates neuronal ferroptosis after AIS via the miR-342-5p/ACSL4 axis. Furthermore, miR-342-5p/ACSL4 axis holds promise as a viable therapeutic target and practical biomarkers for AIS patients.

17.
Environ Sci Technol ; 58(29): 13157-13167, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996057

RESUMEN

Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.


Asunto(s)
Oxidación-Reducción , Purificación del Agua , Hidrólisis , Purificación del Agua/métodos , Membranas Artificiales , Contaminantes Químicos del Agua/química , Cinética
18.
Intensive Care Med ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046487
19.
Int Immunopharmacol ; 138: 112598, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38981223

RESUMEN

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.


Asunto(s)
Antiinflamatorios , Euphorbia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inmunología , Artritis Gotosa/metabolismo , Artritis Gotosa/inducido químicamente , Modelos Animales de Enfermedad , Diterpenos/farmacología , Diterpenos/uso terapéutico , Euphorbia/química , Gota/tratamiento farmacológico , Gota/inmunología , Gota/patología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Úrico
20.
ACS Appl Mater Interfaces ; 16(30): 39418-39426, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39020510

RESUMEN

Artificial solid electrolyte interphase (SEI) layers have been widely regarded as an effective protection for lithium (Li) metal anodes. In this work, an artificial SEI film consisting of dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and polymerized styrene butadiene rubber is designed, which has good mechanical and chemical stability to effectively prevent Li anode corrosion by the electrolyte. The LLZTO-based SEI film can not only guide Li to uniformly deposit at the interface but also accelerate the electrochemical reaction kinetics due to its high Li+ conductivity. In particular, the high Young's modulus of the LLZTO-based SEI will regulate e- distribution in the continuous Li plating/stripping process and achieve uniform deposition of Li. As a consequence, the Li anode with LLZTO-based SEI (Li@LLZTO) enables symmetric cells to demonstrate a stable overpotential of 25 mV for 600 h at a current density of 1 mA cm-2 for 1 mA h cm-2. The Li@LLZTO||LFP (LiFePO4) full cell exhibits a capacity of 106 mA h g-1 after 800 cycles at 5 C with retention as high as 90%. Our strategy here suggests that the artificial SEI with high Young's modulus effectively inhibits the formation of Li dendrites and provides some guidance for the design of higher performance Li metal batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA