Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2404595, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966880

RESUMEN

Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm-2 at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm-2 on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39020510

RESUMEN

Artificial solid electrolyte interphase (SEI) layers have been widely regarded as an effective protection for lithium (Li) metal anodes. In this work, an artificial SEI film consisting of dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and polymerized styrene butadiene rubber is designed, which has good mechanical and chemical stability to effectively prevent Li anode corrosion by the electrolyte. The LLZTO-based SEI film can not only guide Li to uniformly deposit at the interface but also accelerate the electrochemical reaction kinetics due to its high Li+ conductivity. In particular, the high Young's modulus of the LLZTO-based SEI will regulate e- distribution in the continuous Li plating/stripping process and achieve uniform deposition of Li. As a consequence, the Li anode with LLZTO-based SEI (Li@LLZTO) enables symmetric cells to demonstrate a stable overpotential of 25 mV for 600 h at a current density of 1 mA cm-2 for 1 mA h cm-2. The Li@LLZTO||LFP (LiFePO4) full cell exhibits a capacity of 106 mA h g-1 after 800 cycles at 5 C with retention as high as 90%. Our strategy here suggests that the artificial SEI with high Young's modulus effectively inhibits the formation of Li dendrites and provides some guidance for the design of higher performance Li metal batteries.

3.
Int Immunopharmacol ; 138: 112598, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981223

RESUMEN

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.

4.
Int J Ophthalmol ; 17(7): 1248-1254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026914

RESUMEN

AIM: To report a one-year clinical outcomes of low-dose laser cycloplasty (LCP) among malignant glaucoma patients. METHODS: In this prospective, multicenter, non-comparative clinical study, participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China. Patients were followed up at 1wk, 1, 3, 6, and 12mo. Intraocular pressure (IOP), number of glaucoma medications, anterior chamber depth (ACD), and complications were recorded. Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy. Recurrence was defined by the presence of a shallow or flat anterior chamber after initial recovery from treatment. RESULTS: A total of 34 eyes received LCP. Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg (P<0.001) with 2.9±1.6 medications (P=0.046) at 1d, and 17.4±6.7 mm Hg (P<0.001) with 1.3±1.7 medications (P<0.001) at 12mo. The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo, respectively. A total of 32 (94.1%) eyes achieved initial anatomical success. During follow-up, 2 (5.9%) eyes failed and 8 (23.5%) eyes relapsed, yielding a 12-month anatomical success rate of 64.3%. Complications including anterior synechia (8.82%), choroidal/ciliary detachment (5.88%) and hypopyon (2.94%) were observed within 1wk. CONCLUSION: LCP is simple, safe, and effective in reforming the anterior chamber in malignant glaucoma.

5.
Sci Data ; 11(1): 725, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956385

RESUMEN

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Análisis de la Célula Individual , Teratoma , Humanos , Teratoma/genética , Teratoma/patología , Células Madre Pluripotentes/metabolismo , Linaje de la Célula , Factores de Transcripción/genética
6.
ACS Biomater Sci Eng ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950519

RESUMEN

Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn2Sr(PO4)2) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and in vitro cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an in vivo bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.

7.
Eur J Med Res ; 29(1): 356, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970130

RESUMEN

BACKGROUND: To date, multiple cases of adverse reactions to COVID-19 vaccines have been reported worldwide. Alopecia areata (AA) is an uncommon type of adverse reaction reported in some articles and has a significant social and psychological impact on patients. Our study aimed to review the AA and COVID-19 vaccine literature. METHODS: This systematic review was conducted by searching for articles on AA following COVID-19 vaccines in international databases such as Embase, MEDLINE, PubMed, Web of Knowledge, and Ovid from December 2019 to December 30, 2023. We included studies that provided data for AA patients following COVID-19 vaccination with at least one dose. Data on sex, age, country/region of origin, vaccine type, days between vaccination and symptom presentation, manifestations of AA, trichoscopy and histopathological findings, treatment, and outcomes were included. RESULTS: In total, 579 explored studies were identified and assessed, and 25 articles with a total of 51 patients were included in the review. Twenty-seven (52.9%) patients developed new-onset AA following receiving the COVID-19 vaccine, and AA recurrence or exacerbation occurred after receiving the COVID-19 vaccine in 24 (47.1%) patients with preexisting disease. Five vaccines were reported to cause AA in all cases. The Pfizer vaccine (45.1%) was the most frequently reported, followed by the ChAdOx1 nCoV-19 vaccine (27.5%), Moderna mRNA-1273 (19.6%), Sinopharm (3.9%) and SinoVac (3.9%). AA occurred most frequently within one month after the 1st dose, and then, the incidence decreased gradually with time. Topical or systemic corticosteroids were used in 38 patients. Eleven patients were treated with a Janus Kinase inhibitor (jakinib) inhibitor, eight with tofacitinib, and three with an unspecified jakinib. However, 3 of the 11 patients experienced exacerbations after treatment. CONCLUSION: AA after COVID-19 vaccination is rare, and physicians should be aware of this phenomenon to improve early diagnosis and appropriate treatment.


Asunto(s)
Alopecia Areata , Vacunas contra la COVID-19 , COVID-19 , Humanos , Alopecia Areata/inducido químicamente , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2/inmunología , Masculino , Femenino
8.
Environ Sci Technol ; 58(29): 13157-13167, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996057

RESUMEN

Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.


Asunto(s)
Oxidación-Reducción , Purificación del Agua , Hidrólisis , Purificación del Agua/métodos , Membranas Artificiales , Contaminantes Químicos del Agua/química , Cinética
9.
J Nephrol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031241

RESUMEN

BACKGROUND: Urine sediment examination is a time-tested and non-invasive diagnostic tool. This study investigated the characteristics of urine sediment and its association with severity and renal outcomes in diabetic nephropathy (DN) patients. METHODS: A total of 201 biopsy-proven diabetic nephropathy patients (according to the pathological classification of diabetic nephropathy proposed by the Renal Pathology Society in 2010) who underwent manual urine sediment microscopic examination were included. We compared the clinicopathological characteristics of diabetic nephropathy patients with and without urinary renal tubular epithelial cells (RTECs) or renal tubular epithelial cell casts. The predictive value of urinary renal tubular epithelial cells or renal tubular epithelial cell casts for renal outcomes in diabetic nephropathy was analyzed. RESULTS: Fifty of 201 (24.9%) diabetic nephropathy patients had renal tubular epithelial cells or renal tubular epithelial cell casts in urine sediment. Diabetic nephropathy patients with renal tubular epithelial cells or renal tubular epithelial cell casts in urine sediment had a significantly higher level of proteinuria [6.0 (3.1, 9.7) vs. 3.6 (1.8, 6.8) g/24 h, p = 0.001], higher serum creatinine [227.9 (151.6, 338.1) vs. 177.0 (104.4, 288.4) µmol/L, p = 0.016] and lower estimated glomerular filtration rate (eGFR) [25.8 (15.8, 44.8) vs. 35.7 (19.9, 65.0) mL/min/1.73 m2, p = 0.025] than those without. Cox regression analysis demonstrated that the presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts was independently associated with the development of end-stage kidney disease (ESKD) in diabetic nephropathy patients [HR 1.670, 95% CI (1.042, 2.676), p = 0.033]. Adding the presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts to the predictive model could improve the effectiveness of the model for predicting the risk of ESKD within one year after renal biopsy. CONCLUSIONS: The presence of urinary renal tubular epithelial cells or renal tubular epithelial cell casts was associated with more severe kidney injury and worse renal outcomes in patients with diabetic nephropathy, thus perhaps providing a noninvasive biomarker for predicting diabetic nephropathy.

10.
Exp Cell Res ; 441(1): 114167, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004202

RESUMEN

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH + NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.

11.
Front Aging Neurosci ; 16: 1419235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38934019

RESUMEN

Background: The association of cognitive function, its changes, and all-cause mortality has not reached a consensus, and the independence of the association between changes in cognitive function and mortality remains unclear. The purpose of this study was to evaluate the longitudinal association between baseline cognitive function and cognitive changes over 1 year with subsequent all-cause mortality among the older adults aged 60 and above. Methods: A prospective cohort study utilizing the Community Older Adults Health Survey data. Initiated in 2018, the study annually assessed all individuals aged 60+ in Dalang Town, Dongguan City. Cognitive function was assessed using the Chinese version of the Mini-Mental State Examination (MMSE). A total of 6,042 older adults individuals were included, and multivariate Cox proportional hazard models were used to examine cognitive function's impact on mortality. Results: Participants' median age was 70 years, with 39% men. Over a median 3.08-year follow-up, 525 died. Mortality risk increased by 6% per MMSE score decrease (adjusted HR = 1.06, 95%CI: 1.05-1.08). Compared to those with normal cognitive function at baseline, participants with mild cognitive impairment and moderate to severe cognitive impairment had significantly higher mortality risks (adjusted HR = 1.40, 95%CI: 1.07-1.82; HR = 2.49, 95%CI: 1.91-3.24, respectively). The risk of death was 5% higher for each one-point per year decrease in cognitive function change rate (HR = 1.05, 95%CI: 1.02-1.08). Compared with participants with stable cognitive function, those with rapid cognitive decline had a 79% increased risk of death (adjusted HR = 1.79, 95% CI: 1.11-2.87), with baseline cognitive function influencing this relationship significantly (P for interaction = 0.002). Conclusion: Baseline cognitive impairment and rapid cognitive decline are associated with higher all-cause mortality risks in Chinese older adults. Baseline function influences the mortality impact of cognitive changes.

12.
Membranes (Basel) ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921488

RESUMEN

As a central component for anion exchange membrane fuel cells (AEMFCs), the anion exchange membrane is now facing the challenge of further improving its conductivity and alkali stability. Herein, a twisted all-carbon backbone is designed by introducing stereo-contorted units with piperidinium groups dangled at the twisted sites. The rigid and twisted backbone improves the conduction of hydroxide and brings down the squeezing effect of the backbone on piperidine rings. Accordingly, an anion exchange membrane prepared through this method exhibits adapted OH- conductivity, low swelling ratio and excellent alkali stability, even in high alkali concentrations. Further, a fuel cell assembled with a such-prepared membrane can reach a power density of 904.2 mW/cm2 and be capable of continuous operation for over 50 h. These results demonstrate that the designed membrane has good potential for applications in AEMFCs.

13.
Biol Reprod ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874283

RESUMEN

The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia (sPE). CCN1 was expressed not only in cytotrophoblasts, trophoblast columns and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset sPE might contribute to the pathogenesis of this disease.

14.
Water Sci Technol ; 89(11): 3007-3020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877627

RESUMEN

To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.


Asunto(s)
Comamonas , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Nitrógeno/metabolismo , Comamonas/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aerobiosis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/metabolismo
15.
Chem Sci ; 15(22): 8363-8371, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846393

RESUMEN

The request for both high catalytic selectivity and high catalytic activity is rather challenging, particularly for catalysis systems with the primary and side reactions having comparable energy barriers. Here in this study, we simultaneously optimized the selectivity and activity for acetylene semi-hydrogenation by rationally and continuously varying the doping ratio of Zn atoms on the surface of Pd particles in Pd/ZnO catalysts. In the reaction temperature range of 40-200 °C, the conversion of acetylene was close to ∼100%, and the selectivity for ethylene exceeded 90% (the highest ethylene selectivity, ∼98%). Experimental characterization and density functional theory calculations revealed that the Zn promoter could alter the catalyst's potential energy surface, resulting in a "confinement" effect, which effectively improves the selectivity yet without significantly impairing the catalytic activity. The mismatched impacts on activity and selectivity resulting from continuous and controllable alteration in the catalyst structure provide a promising parameter space within which the two aspects could both be optimized.

16.
Opt Express ; 32(10): 17953-17965, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858963

RESUMEN

This article presents a dual-wavelength signal wave output system capable of generating a broad range of adjustable wavelength intervals. The setup involved the creation of a dual-wavelength cascaded Raman laser featuring composite cavities operating at 1176 nm and 1313 nm. Experimental investigations were carried out on an external cavity MgO:PPLN-OPO driven by the cascaded Raman laser. By setting the crystal polarization period to 27.6-34.4 µm and the temperature to 50-130°C, adjustable tunable output of dual-wavelength signal wave at 1176 nm-MgO:PPLN-OPO (1550-2294 nm) and 1313 nm-MgO:PPLN-OPO (1768-2189 nm) was achieved with a wavelength interval of 0-218 nm. Under the conditions of a period of 34.4 µm, temperature of 90°C, and an incident Raman power of 2.6 W, the highest conversion efficiency of Raman to dual-wavelength signal wave (2212, 2182 nm) was 34.2%. Furthermore, the maximum output power of dual-wavelength signal wave was recorded at 1.02 W with an incident Raman power of 3.33 W.

17.
Opt Express ; 32(11): 19088-19104, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859052

RESUMEN

Compared with traditional electrical logic gates, optical or terahertz (THz) computing logic gates have faster computing speeds and lower power consumption, and can better meet the huge data computing needs. However, there are limitations inherent in existing optical logic gates, such as single input/output channels and susceptibility to interference. Here, we proposed a new approach utilizing polarization-sensitive graphene-vanadium dioxide metasurface THz logic gates. Benefitting from two actively tunable materials, the proposed controlled-NOT logic gate(CNOT LG) enables versatile functionality through a dual-parameter control system. This system allows for the realization of multiple output states under diverse polarized illuminating conditions, aligning with the expected input-output logic relationship of the CNOT LG. Furthermore, to demonstrate the robustness of the designed THz CNOT LG metasurface, we designed an imaging array harnessing the dynamic control capabilities of tunable meta-atoms, facilitating clear near-field imaging. This research is promising for advancing CNOT LG applications in the THz spectrum. It has potential applications in telecommunications, sensing, and imaging.

18.
Crit Rev Oncol Hematol ; : 104430, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942220

RESUMEN

Pancreatic cancer remains one of the deadliest malignancies with an overall 5-year survival rate of 13%. This dismal fact can be partly attributed to currently limited understanding of tumor heterogeneity and immune microenvironment. Traditional bulk-sequencing techniques overlook the diversity of tumor cells, while single-cell sequencing disorganizes the position localizing of cells in tumor microenvironment. The advent of spatial transcriptomics (ST) presents a novel solution by integrating location and whole transcript expression information. This technology allows for detailed observation of spatio-temporal changes across various cell subtypes within the pancreatic tumor microenvironment, providing insights into their potential functions. This review offers an overview of recent studies implementing ST in pancreatic cancer research, highlighting its instrumental role in investigating the heterogeneity and functions of tumor cells, stromal cells, and immune cells. On the basis, we also prospected and summarized the clinical application scenarios, technical limitations and challenges of ST technology in pancreatic cancer.

19.
J Colloid Interface Sci ; 673: 909-921, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909490

RESUMEN

Electrocatalysts with appropriate electron coupling toward LiO2 intermediates can exhibit superior oxygen reduction/evolution reaction kinetics in Li-O2 batteries (LOBs). In this work, a charge redistribution strategy has been developed by constructing NiS/MoS2 heterostructure nanosheet self-assembled hollow microspheres with an internal electric field to regulate the interaction with LiO2 and then improve the electrochemical performance of LOBs. Density functional theory calculations and physicochemical characterizations reveal that the difference of work functions between NiS and MoS2 promotes the electron redistribution in heterointerface via built-in electrical field, leading to increased electron density of interfacial Ni atom, thereby enhancing its electron coupling toward LiO2 intermediates and promoting one-electron oxygen reduction/oxidation reaction kinetics. As a result, the NiS/MoS2-based LOBs exhibit evidently higher discharge capacity and much better cycling performance than the batteries using NiS and MoS2. This work provides a reliable charge redistribution strategy induced by build-in electric field to design efficient catalysts for LOBs.

20.
World J Clin Cases ; 12(16): 2911-2916, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899298

RESUMEN

BACKGROUND: Transarterial chemoembolization (TACE) is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). The complications of TACE include biliary tract infection, liver dysfunction, tumor lysis syndrome, biloma, partial intestinal obstruction, cerebral lipiodol embolism, etc. There are few reports about tracheal fistula induced by TACE. CASE SUMMARY: A 42-year-old man came to our hospital with cough and expectoration for 1 month after TACE for HCC. Laboratory test results showed abnormalities of albumin, hemoglobin, prothrombin time, C-reactive protein, D-dimer, and prothrombin. Culture of both phlegm and liver pus revealed growth of Citrobacter flavescens. Computed tomography showed infection in the inferior lobe of the right lung and a low-density lesion with gas in the right liver. Liver ultrasound showed that there was a big hypoechoic liquid lesion without blood flow signal. Drainage for liver abscess by needle puncture under ultrasonic guidance was performed. After 1 month of drainage and anti-infection therapy, the abscess in the liver and the infection in the lung were reduced obviously, and the symptom of expectoration was relieved. CONCLUSION: Clinicians should be alert to the possibility of complications of liver abscess and tracheal fistula after TACE for HCC. Drainage for liver abscess by needle puncture under ultrasonic guidance could relieve the liver abscess and tracheal fistula.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA