Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 534-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448599

RESUMEN

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.

2.
Hortic Res ; 11(3): uhae015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544551

RESUMEN

The nectar spur is an important feature of pollination and ecological adaptation in flowering plants, and it is a key innovation to promote species diversity in certain plant lineages. The development mechanism of spurs varies among different plant taxa. As one of the largest angiosperm genera, we have little understanding of the mechanism of spur development in Impatiens. Here, we investigated the initiation and growth process of spurs of Impatiens uliginosa based on histology and hormone levels, and the roles of AUXIN BINDING PROTEIN (ABP) and extensin (EXT) in spur development were explored. Our results indicate that the spur development of I. uliginosa is composed of cell division and anisotropic cell elongation. Imbalances in spur proximal-distal cell division lead to the formation of curved structures. Endogenous hormones, such as auxin and cytokinins, were enriched at different developmental stages of spurs. IuABP knockdown led to an increase in spur curves and distortion of morphology. IuEXT knockdown resulted in reduced spur length and loss of curve and inner epidermal papillae structures. This study provides new insights into the mechanism of spur development in core eudicots.

3.
Science ; 383(6687): 1080-1083, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452084

RESUMEN

High-Q microresonators are indispensable components of photonic integrated circuits and offer several useful operational modes. However, these modes cannot be reconfigured after fabrication because they are fixed by the resonator's physical geometry. In this work, we propose a Moiré speedup dispersion tuning method that enables a microresonator device to operate in any of three modes. Electrical tuning of Vernier coupled rings switches operating modality to Brillouin laser, bright microcomb, and dark microcomb operation on demand using the same hybrid-integrated device. Brillouin phase matching and microcomb operation across the telecom C-band is demonstrated. Likewise, by using a single-pump wavelength, the operating mode can be switched. As a result, one universal design can be applied across a range of applications. The device brings flexible mixed-mode operation to integrated photonic circuits.

4.
Opt Lett ; 48(15): 3853-3856, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527066

RESUMEN

Soliton mode locking in high-Q microcavities provides a way to integrate frequency comb systems. Among material platforms, AlGaAs has one of the largest optical nonlinearity coefficients, and is advantageous for low-pump-threshold comb generation. However, AlGaAs also has a very large thermo-optic effect that destabilizes soliton formation, and femtosecond soliton pulse generation has only been possible at cryogenic temperatures. Here, soliton generation in AlGaAs microresonators at room temperature is reported for the first time, to the best of our knowledge. The destabilizing thermo-optic effect is shown to instead provide stability in the high-repetition-rate soliton regime (corresponding to a large, normalized second-order dispersion parameter D2/κ). Single soliton and soliton crystal generation with sub-milliwatt optical pump power are demonstrated. The generality of this approach is verified in a high-Q silica microtoroid where manual tuning into the soliton regime is demonstrated. Besides the advantages of large optical nonlinearity, these AlGaAs devices are natural candidates for integration with semiconductor pump lasers. Furthermore, the approach should generalize to any high-Q resonator material platform.

5.
Nature ; 620(7972): 78-85, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532812

RESUMEN

Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects1-5. However, in optical systems such as microwave synthesizers6, optical gyroscopes7 and atomic clocks8, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format-that is, on a single chip-for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III-V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.

6.
Mol Biol Evol ; 40(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37433053

RESUMEN

Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.


Asunto(s)
Lobos , Perros , Animales , Lobos/genética , Herencia Multifactorial , Genoma , Genómica , Secuencia de Bases
7.
Opt Lett ; 48(13): 3511-3514, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390168

RESUMEN

Thermal silica is a common dielectric used in all-silicon photonic circuits. Additionally, bound hydroxyl ions (Si-OH) can provide a significant component of optical loss in this material on account of the wet nature of the thermal oxidation process. A convenient way to quantify this loss relative to other mechanisms is through OH absorption at 1380 nm. Here, using ultra-high-quality factor (Q-factor) thermal-silica wedge microresonators, the OH absorption loss peak is measured and distinguished from the scattering loss baseline over a wavelength range from 680 nm to 1550 nm. Record-high on-chip resonator Q-factors are observed for near-visible and visible wavelengths, and the absorption limited Q-factor is as high as 8 billion in the telecom band. Hydroxyl ion content level around 2.4 ppm (weight) is inferred from both Q measurements and by secondary ion mass spectroscopy (SIMS) depth profiling.


Asunto(s)
Fotones , Silicio , Dióxido de Silicio
8.
Sci Adv ; 8(43): eabp9006, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306350

RESUMEN

Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide-based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity. In this work, we demonstrate a laser system with a 1-s linewidth of 1.1 Hz and fractional frequency instability below 10-14 to 1 s. This low-noise performance leverages integrated lasers together with an 8-ml vacuum-gap cavity using microfabricated mirrors. All critical components are lithographically defined on planar substrates, holding potential for high-volume manufacturing. Consequently, this work provides an important advance toward compact lasers with hertz linewidths for portable optical clocks, radio frequency photonic oscillators, and related communication and navigation systems.

9.
Nat Commun ; 13(1): 5344, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097269

RESUMEN

The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.

10.
Nature ; 610(7930): 54-60, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171286

RESUMEN

Integrated photonics has profoundly affected a wide range of technologies underpinning modern society1-4. The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency5,6. Over the last decade, the progression from pure III-V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry7,8. Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III-V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.

11.
Nat Commun ; 13(1): 3323, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680923

RESUMEN

Optical microresonators with high quality (Q) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator Q factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of Q, the ultimate attainable Q, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited Q factors in several photonic material platforms. High-Q microresonators are fabricated from thin films of SiO2, Si3N4, Al0.2Ga0.8As, and Ta2O5. By using cavity-enhanced photothermal spectroscopy, the material-limited Q is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate Q vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.

12.
Nat Commun ; 12(1): 6650, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789737

RESUMEN

Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic integrated circuits (PICs), but are difficult to fully integrate with low-index SiN waveguides due to their large mismatch with the high-index III-V gain materials. The recent demonstration of multilayer heterogeneous integration provides a practical solution and enabled the first-generation of lasers fully integrated with SiN waveguides. However, a laser with high device yield and high output power at telecommunication wavelengths, where photonics applications are clustered, is still missing, hindered by large mode transition loss, non-optimized cavity design, and a complicated fabrication process. Here, we report high-performance lasers on SiN with tens of milliwatts output power through the SiN waveguide and sub-kHz fundamental linewidth, addressing all the aforementioned issues. We also show Hertz-level fundamental linewidth lasers are achievable with the developed integration techniques. These lasers, together with high-Q SiN resonators, mark a milestone towards a fully integrated low-noise silicon nitride photonics platform. This laser should find potential applications in LIDAR, microwave photonics and coherent optical communications.

13.
Nat Commun ; 12(1): 6573, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772953

RESUMEN

Dual-comb spectroscopy (DCS) offers high sensitivity and wide spectral coverage without the need for bulky spectrometers or mechanical moving parts. And DCS in the mid-infrared (mid-IR) is of keen interest because of inherently strong molecular spectroscopic signatures in these bands. We report GHz-resolution mid-IR DCS of methane and ethane that is derived from counter-propagating (CP) soliton microcombs in combination with interleaved difference frequency generation. Because all four combs required to generate the two mid-IR combs rely upon stability derived from a single high-Q microcavity, the system architecture is both simplified and does not require external frequency locking. Methane and ethane spectra are measured over intervals as short as 0.5 ms, a time scale that can be further reduced using a different CP soliton arrangement. Also, tuning of spectral resolution on demand is demonstrated. Although at an early phase of development, the results are a step towards mid-IR gas sensors with chip-based architectures for chemical threat detection, breath analysis, combustion studies, and outdoor observation of trace gases.

14.
Opt Lett ; 46(20): 5201-5204, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653151

RESUMEN

We self-injection-lock a diode laser to a 1.41 m long, ultra-high Q integrated resonator. The hybrid integrated laser reaches a frequency noise floor of 0.006Hz2/Hz at 4 MHz offset, corresponding to a Lorentzian linewidth below 40 mHz-a record among semiconductor lasers. It also exhibits exceptional stability at low-offset frequencies, with frequency noise of 200Hz2/Hz at 100 Hz offset. Such performance, realized in a system comprised entirely of integrated photonic chips, marks a milestone in the development of integrated photonics; and, for the first time, to the best of our knowledge, exceeds the frequency noise performance of commercially available, high-performance fiber lasers.

15.
Nat Commun ; 12(1): 1442, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664265

RESUMEN

Compact, low-noise microwave sources are required throughout a wide range of application areas including frequency metrology, wireless-communications and airborne radar systems. And the photonic generation of microwaves using soliton microcombs offers a path towards integrated, low noise microwave signal sources. In these devices, a so called quiet-point of operation has been shown to reduce microwave frequency noise. Such operation decouples pump frequency noise from the soliton's motion by balancing the Raman self-frequency shift with dispersive-wave recoil. Here, we explore the limit of this noise suppression approach and reveal a fundamental noise mechanism associated with fluctuations of the dispersive wave frequency. At the same time, pump noise reduction by as much as 36 dB is demonstrated. This fundamental noise mechanism is expected to impact microwave noise (and pulse timing jitter) whenever solitons radiate into dispersive waves belonging to different spatial mode families.

16.
Light Sci Appl ; 9(1): 205, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33361759

RESUMEN

Mode-coupling-induced dispersion has been used to engineer microresonators for soliton generation at the edge of the visible band. Here, we show that the optical soliton formed in this way is analogous to optical Bragg solitons and, more generally, to the Dirac soliton in quantum field theory. This optical Dirac soliton is studied theoretically, and a closed-form solution is derived in the corresponding conservative system. Both analytical and numerical solutions show unusual properties, such as polarization twisting and asymmetrical optical spectra. The closed-form solution is also used to study the repetition rate shift in the soliton. An observation of the asymmetrical spectrum is analysed using theory. The properties of Dirac optical solitons in microresonators are important at a fundamental level and provide a road map for soliton microcomb generation in the visible band.

17.
Opt Lett ; 45(18): 5129-5131, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932469

RESUMEN

High optical quality (Q) factors are critically important in optical microcavities, where performance in applications spanning nonlinear optics to cavity quantum electrodynamics is determined. Here, a record Q factor of over 1.1 billion is demonstrated for on-chip optical resonators. Using silica whispering-gallery resonators on silicon, Q-factor data is measured over wavelengths spanning the C/L bands (100 nm) and for a range of resonator sizes and mode families. A record low sub-milliwatt parametric oscillation threshold is also measured in 9 GHz free-spectral-range devices. The results show the potential for thermal silica on silicon as a resonator material.

18.
Nature ; 582(7812): 365-369, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555486

RESUMEN

Optical frequency combs have a wide range of applications in science and technology1. An important development for miniature and integrated comb systems is the formation of dissipative Kerr solitons in coherently pumped high-quality-factor optical microresonators2-9. Such soliton microcombs10 have been applied to spectroscopy11-13, the search for exoplanets14,15, optical frequency synthesis16, time keeping17 and other areas10. In addition, the recent integration of microresonators with lasers has revealed the viability of fully chip-based soliton microcombs18,19. However, the operation of microcombs requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components, and microcombs operating at rates that are compatible with electronic circuits-as is required in nearly all comb systems-have not yet been integrated with pump lasers because of their high power requirements. Here we experimentally demonstrate and theoretically describe a turnkey operation regime for soliton microcombs co-integrated with a pump laser. We show the appearance of an operating point at which solitons are immediately generated by turning the pump laser on, thereby eliminating the need for photonic and electronic control circuitry. These features are combined with high-quality-factor Si3N4 resonators to provide microcombs with repetition frequencies as low as 15 gigahertz that are fully integrated into an industry standard (butterfly) package, thereby offering compelling advantages for high-volume production.

19.
Arch Microbiol ; 202(7): 1939-1944, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451593

RESUMEN

One motile strain designated, YIM DR1026T was isolated from the roots of Psammosilene tunicoides collected from Gejiu, Yunnan province, China. The cells of strain YIM DR1026T were Gram-negative and short-rod shaped. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM DR1026T was a member of the genus Aureimonas and closely related to Aureimonas rubiginis (96.7%). DNA-DNA relatedness values between strain YIM 1026T and Aureimonas rubiginis BCRC 80440T was 38.2 ± 1.5%. The ANI value between YIM DR1026T and other Aureimonas members were below the cut-off level (95-96%) recommended as the average nucleotide identity (ANI) criterion for interspecies identity. Strain YIM DR1026T grew at 4-30 °C (optimum 28 °C), pH 4.0-9.0 (optimum pH 6.0-7.0) and tolerated NaCl (w/v) up to 1% (optimum 0%). Q-10 was sole the respiratory ubiquinone present in YIM DR1026T. Polar lipids of strain YIM DR1026T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, sulfoquinovosyldiacylglycerol, unidentified aminolipid and unidentified polar lipid. The genomic G + C content was 64.6 mol%. The major fatty acids were C18:1ω7c, C16:0 and summed feature 3 (C16:1ω7c/C16:1ω6c). Based on phenotypic, phylogenetic, chemotaxonomic and genome comparison, strain YIM DR1026T represents a novel species of the genus Aureimonas, for which the name Aureimonas psammosilene sp. nov. is proposed. The type strain is YIM DR1026T (= KCTC 42691T = NBRC 112412T).


Asunto(s)
Alphaproteobacteria/clasificación , Caryophyllaceae/microbiología , Filogenia , Raíces de Plantas/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis , ARN Ribosómico 16S/genética , Especificidad de la Especie
20.
Science ; 363(6430): 965-968, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30792361

RESUMEN

Determination of laser frequency with high resolution under continuous and abrupt tuning conditions is important for sensing, spectroscopy, and communications. We show that a single microresonator provides rapid and broadband measurement of optical frequencies with a relative frequency precision comparable to that of conventional dual-frequency comb systems. Dual-locked counterpropagating solitons having slightly different repetition rates were used to implement a vernier spectrometer, which enabled characterization of laser tuning rates as high as 10 terahertz per second, broadly step-tuned lasers, multiline laser spectra, and molecular absorption lines. Besides providing a considerable technical simplification through the dual-locked solitons and enhanced capability for measurement of arbitrarily tuned sources, our results reveal possibilities for chip-scale spectrometers that exceed the performance of tabletop grating and interferometer-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA