Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 15222-15231, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585077

RESUMEN

Macroporous polymers have gained significant attention due to their unique mass transport and size-selective properties. In this study, we focused on Polyimide (PI), a high-performance polymer, as an ideal candidate for macroporous structures. Despite various attempts to create macroporous PI (Macro PI) using emulsion templates, challenges remained, including limited chemical diversity and poor control over pore size and porosity. To address these issues, we systematically investigated the role of poly(amic acid) salt (PAAS) polymers as macrosurfactants and matrices. By designing 12 different PAAS polymers with diverse chemical structures, we achieved stable high internal phase emulsions (HIPEs) with >80 vol % internal volume. The resulting Macro PIs exhibited exceptional porosity (>99 vol %) after thermal imidization. We explored the structure-property relationships of these Macro PIs, emphasizing the importance of controlling pore size distribution. Furthermore, our study demonstrated the utility of these Macro PIs as separators in Li-metal batteries, providing stable charging-discharging cycles. Our findings not only enhance the understanding of emulsion-based macroporous polymers but also pave the way for their applications in advanced energy storage systems and beyond.

2.
Small ; 20(24): e2307200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38197540

RESUMEN

Uniform lithium deposition is essential to hinder dendritic growth. Achieving this demands even seed material distribution across the electrode, posing challenges in correlating the electrode's surface structure with the uniformity of seed material distribution. In this study, the effect of periodic surface and facet orientation on seed distribution is investigated using a model system consisting of a wrinkled copper (Cu)/graphene structure with a [100] facet orientation. A new methodology is developed for uniformly distributed silver (Ag) nanoparticles over a large area by controlling the surface features of Cu substrates. The regularly arranged Ag nanoparticles, with a diameter of 26.4 nm, are fabricated by controlling the Cu surface condition as [100]-oriented wrinkled Cu. The wrinkled Cu guides a deposition site for spherical Ag nanoparticles, the [100] facet determines the Ag morphology, and the presence of graphene leads to spacings of Ag seeds. This patterned surface and high lithiophilicity, with homogeneously distributed Ag nanoparticles, lead to uniform Li+ flux and reduced nucleation energy barrier, resulting in excellent battery performance. The electrochemical measurements exhibit improved cyclic stability over 260 cycles at 0.5 mA cm-2 and 100 cycles at 1.0 mA cm-2 and enhanced kinetics even under a high current density of 5.0 mA cm-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA