RESUMEN
This research aims to explore more efficient machine learning (ML) algorithms with better performance for short-term forecasting. Up-to-date literature shows a lack of research on selecting practical ML algorithms for short-term forecasting in real-time industrial applications. This research uses a quantitative and qualitative mixed method combining two rounds of literature reviews, a case study, and a comparative analysis. Ten widely used ML algorithms are selected to conduct a comparative study of gas warning systems in a case study mine. We propose a new assessment visualization tool: a 2D space-based quadrant diagram can be used to visually map prediction error assessment and predictive performance assessment for tested algorithms. Overall, this visualization tool indicates that LR, RF, and SVM are more efficient ML algorithms with overall prediction performance for short-term forecasting. This research indicates ten tested algorithms can be visually mapped onto optimal (LR, RF, and SVM), efficient (ARIMA), suboptimal (BP-SOG, KNN, and Perceptron), and inefficient algorithms (RNN, BP_Resilient, and LSTM). The case study finds results that differ from previous studies regarding the ML efficiency of ARIMA, KNN, LR, LSTM, and SVM. This study finds different views on the prediction performance of a few paired algorithms compared with previous studies, including RF and LR, SVM and RF, KNN and ARIMA, KNN and SVM, RNN and ARIMA, and LSTM and SVM. This study also suggests that ARIMA, KNN, LR, and LSTM should be investigated further with additional prediction error assessments. Overall, no single algorithm can fit all applications. This study raises 20 valuable questions for further research.
RESUMEN
Since the pandemic started, organisations have been actively seeking ways to improve their organisational agility and resilience (regility) and turn to Artificial Intelligence (AI) to gain a deeper understanding and further enhance their agility and regility. Organisations are turning to AI as a critical enabler to achieve these goals. AI empowers organisations by analysing large data sets quickly and accurately, enabling faster decision-making and building agility and resilience. This strategic use of AI gives businesses a competitive advantage and allows them to adapt to rapidly changing environments. Failure to prioritise agility and responsiveness can result in increased costs, missed opportunities, competition and reputational damage, and ultimately, loss of customers, revenue, profitability, and market share. Prioritising can be achieved by utilising eXplainable Artificial Intelligence (XAI) techniques, illuminating how AI models make decisions and making them transparent, interpretable, and understandable. Based on previous research on using AI to predict organisational agility, this study focuses on integrating XAI techniques, such as Shapley Additive Explanations (SHAP), in organisational agility and resilience. By identifying the importance of different features that affect organisational agility prediction, this study aims to demystify the decision-making processes of the prediction model using XAI. This is essential for the ethical deployment of AI, fostering trust and transparency in these systems. Recognising key features in organisational agility prediction can guide companies in determining which areas to concentrate on in order to improve their agility and resilience.
Asunto(s)
Inteligencia Artificial , Humanos , COVID-19/epidemiología , Toma de DecisionesRESUMEN
Among all the gas disasters, gas concentration exceeding the threshold limit value (TLV) has been the leading cause of accidents. However, most systems still focus on exploring the methods and framework for avoiding reaching or exceeding TLV of the gas concentration from viewpoints of impacts on geological conditions and coal mining working-face elements. The previous study developed a Trip-Correlation Analysis Theoretical Framework and found strong correlations between gas and gas, gas and temperature, and gas and wind in the gas monitoring system. However, this framework's effectiveness must be examined to determine whether it might be adopted in other coal mine cases. This research aims to explore a proposed verification analysis approach-First-round-Second-round-Verification round (FSV) analysis approach to verify the robustness of the Trip-Correlation Analysis Theoretical Framework for developing a gas warning system. A mixed qualitative and quantitative research methodology is adopted, including a case study and correlational research. The results verify the robustness of the Triple-Correlation Analysis Theoretical Framework. The outcomes imply that this framework is potentially valuable for developing other warning systems. The proposed FSV approach can also be used to explore data patterns insightfully and offer new perspectives to develop warning systems for different industry applications.
RESUMEN
Since the pandemic organizations have been required to build agility to manage risks, stakeholder engagement, improve capabilities and maturity levels to deliver on strategy. Not only is there a requirement to improve performance, a focus on employee engagement and increased use of technology have surfaced as important factors to remain competitive in the new world. Consideration of the strategic horizon, strategic foresight and support structures is required to manage critical factors for the formulation, execution and transformation of strategy. Strategic foresight and Artificial Intelligence modelling are ways to predict an organizations future agility and potential through modelling of attributes, characteristics, practices, support structures, maturity levels and other aspects of future change. The application of this can support the development of required new competencies, skills and capabilities, use of tools and develop a culture of adaptation to improve engagement and performance to successfully deliver on strategy. In this paper we apply an Artificial Intelligence model to predict an organizations level of future agility that can be used to proactively make changes to support improving the level of agility. We also explore the barriers and benefits of improved organizational agility. The research data was collected from 44 respondents in public and private Australian industry sectors. These research findings together with findings from previous studies identify practices and characteristics that contribute to organizational agility for success. This paper contributes to the ongoing discourse of these principles, practices, attributes and characteristics that will help overcome some of the barriers for organizations with limited resources to build a framework and culture of agility to deliver on strategy in a changing world.
Asunto(s)
Inteligencia Artificial , Tecnología , Australia , Compromiso LaboralRESUMEN
This research aims to explore the multi-focus group method as an effective tool for systematically eliciting business requirements for business information system (BIS) projects. During the COVID-19 crisis, many businesses plan to transform their businesses into digital businesses. Business managers face a critical challenge: they do not know much about detailed system requirements and what they want for digital transformation requirements. Among many approaches used for understanding business requirements, the focus group method has been used to help elicit BIS needs over the past 30 years. However, most focus group studies about research practices mainly focus on a particular disciplinary field, such as social, biomedical, and health research. Limited research reported using the multi-focus group method to elicit business system requirements. There is a need to fill this research gap. A case study is conducted to verify that the multi-focus group method might effectively explore detailed system requirements to cover the Case Study business's needs from transforming the existing systems into a visual warning system. The research outcomes verify that the multi-focus group method might effectively explore the detailed system requirements to cover the business's needs. This research identifies that the multi-focus group method is especially suitable for investigating less well-studied, no previous evidence, or unstudied research topics. As a result, an innovative visual warning system was successfully deployed based on the multi-focus studies for user acceptance testing in the Case Study mine in Feb 2022. The main contribution is that this research verifies the multi-focus group method might be an effective tool for systematically eliciting business requirements. Another contribution is to develop a flowchart for adding to Systems Analysis & Design course in information system education, which may guide BIS students step by step on using the multi-focus group method to explore business system requirements in practice.
Asunto(s)
COVID-19 , Humanos , Grupos Focales , Comercio , EstudiantesRESUMEN
BACKGROUND: As the world's largest coal producer, China was accounted for about 46% of global coal production. Among present coal mining risks, methane gas (called gas in this paper) explosion or ignition in an underground mine remains ever-present. Although many techniques have been used, gas accidents associated with the complex elements of underground gassy mines need more robust monitoring or warning systems to identify risks. This paper aimed to determine which single method between the PCA and Entropy methods better establishes a responsive weighted indexing measurement to improve coal mining safety. METHODS: Qualitative and quantitative mixed research methodologies were adopted for this research, including analysis of two case studies, correlation analysis, and comparative analysis. The literature reviewed the most-used multi-criteria decision making (MCDM) methods, including subjective methods and objective methods. The advantages and disadvantages of each MCDM method were briefly discussed. One more round literature review was conducted to search publications between 2017 and 2019 in CNKI. Followed two case studies, correlation analysis and comparative analysis were then conducted. Research ethics was approved by the Shanxi Coking Coal Group Research Committee. RESULTS: The literature searched a total of 25,831publications and found that the PCA method was the predominant method adopted, and the Entropy method was the second most widely adopted method. Two weighting methods were compared using two case studies. For the comparative analysis of Case Study 1, the PCA method appeared to be more responsive than the Entropy. For Case Study 2, the Entropy method is more responsive than the PCA. As a result, both methods were adopted for different cases in the case study mine and finally deployed for user acceptance testing on 5 November 2020. CONCLUSIONS: The findings and suggestions were provided as further scopes for further research. This research indicated that no single method could be adopted as the better option for establishing indexing measurement in all cases. The practical implication suggests that comparative analysis should always be conducted on each case and determine the appropriate weighting method to the relevant case. This research recommended that the PCA method was a dimension reduction technique that could be handy for identifying the critical variables or factors and effectively used in hazard, risk, and emergency assessment. The PCA method might also be well-applied for developing predicting and forecasting systems as it was sensitive to outliers. The Entropy method might be suitable for all the cases requiring the MCDM. There is also a need to conduct further research to probe the causal reasons why the PCA and Entropy methods were applied to each case and not the other way round. This research found that the Entropy method provides higher accuracy than the PCA method. This research also found that the Entropy method demonstrated to assess the weights of the higher dimension dataset was higher sensitivity than the lower dimensions. Finally, the comprehensive analysis indicates a need to explore a more responsive method for establishing a weighted indexing measurement for warning applications in hazard, risk, and emergency assessments.