Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Exp Gerontol ; 194: 112484, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871234

RESUMEN

BACKGROUND: Neurotransmitter transport disorders may play a crucial role in Parkinson's Disease (PD), and Solute carrier family 6 member 12 (SLC6A12) encodes a neurotransmitter transporter. However, the relationship between SLC6A12 and PD remains largely unexplored. METHODS: We utilized the GEO database (107 samples) and clinical data (80 samples) to investigate the role of SLC6A12 in PD through differential expression analysis, ROC analysis, and RT-qPCR experiments. Subsequently, in vitro model, axon length measurement, CCK8 assay, flow cytometry, and JC-1 assays were conducted. Additionally, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein-protein interaction (PPI) network, gene set enrichment analysis (GSEA), and western blot experiments were assessed to explore the functional and mechanistic pathways of SLC6A12 in PD. Finally, CIBERSORT analysis was performed to investigate the correlation between SLC6A12 and immune cells in PD. RESULTS: The expression of SLC6A12 was significantly higher in individuals with PD compared to healthy controls. Inhibiting SLC6A12 expression in PD models enhanced neuronal growth and proliferation activity while reducing cell apoptosis. Furthermore, SLC6A12 was found to be involved in neuronal development, synaptic function, and neural protein transport processes in PD, potentially regulating the MAPK signaling pathway through the Ras/Raf/MEK/ERK axis, contributing to the pathological process of PD. Additionally, SLC6A12 was implicated in immune environment disturbances in PD, notably affecting CD4 T cell expression. CONCLUSION: This study documented the pathogenicity of SLC6A12 in PD for the first time, expanding the understanding of its molecular function and providing a potential target for precise treatment of PD.

2.
Exp Gerontol ; 190: 112415, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614225

RESUMEN

BACKGROUND: Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS: Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS: The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION: These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.


Asunto(s)
Biomarcadores , Antígeno 96 de los Linfocitos , Enfermedad de Parkinson , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis , Biomarcadores/sangre , Estudios de Casos y Controles , Supervivencia Celular , Inmunidad Innata , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/genética , Transcriptoma , Antígeno 96 de los Linfocitos/sangre , Antígeno 96 de los Linfocitos/genética
3.
Neuroimage Clin ; 41: 103555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38134742

RESUMEN

BACKGROUND: This study was designed to investigate the relationship of irisin with the severity of Parkinson's disease (PD) and dopamine (DOPA) uptake in patients with PD and to understand the role of irisin in PD. METHODS: The plasma levels of irisin and α-syn were measured by enzyme-linked immunosorbent assay (ELISA). Motor and nonmotor symptoms were assessed with the relevant scales. DOPA uptake was measured with DOPA positron emission tomography (PET)/magnetic resonance imaging (MRI). RESULTS: The plasma levels of α-syn and irisin in patients with PD gradually increased and decreased, respectively, with the progression of the disease. There was a negative correlation between plasma α-syn and irisin levels in patients with PD. The level of irisin in plasma was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS)-III scores and positively correlated with Montreal Cognitive Assessment (MoCA) scores. The striatal/occipital lobe uptake ratios (SORs) of the ipsilateral and contralateral caudate nucleus and anterior and posterior putamen in the high-irisin group were significantly higher than those in the low-irisin group, and irisin levels in the caudate nucleus and anterior and posterior putamen contralateral to the affected limb were lower than those on the ipsilateral side. The level of irisin was positively correlated with the SORs of the ipsilateral and contralateral caudate nucleus and putamen in PD patients. CONCLUSIONS: Irisin plays a neuroprotective role by decreasing the level of α-syn. Irisin is negatively correlated with the severity of motor symptoms and cognitive impairment. More importantly, irisin can improve DOPA uptake in the striatum of patients with PD, especially on the side contralateral to the affected limb.


Asunto(s)
Enfermedad de Parkinson , Humanos , Núcleo Caudado , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina , Dopamina , Fibronectinas , Enfermedad de Parkinson/diagnóstico por imagen , Gravedad del Paciente
4.
J Neurol Sci ; 451: 120730, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454572

RESUMEN

Parkinson's disease (PD), the most common neurological motor system disorder, which characterised by the irreversible loss of dopaminergic neurones in the substantia nigra pars compacta, and leads to the deficiency of dopamine in the striatum. Deposited Lewy bodies (LBs) in diseased neurones and nerve terminals are the pathological hallmark of PD, and alpha-synuclein (α-Syn) is the most prominent protein in LBs. The tight association between α-Syn and the molecular pathology of PD has generatly increaed the interest in using the α-Syn species as biomarkers to diagnose early PD. α-Syn is not confined to the central nervous system, it is also present in the peripheral tissues, such as human skin. The assessment of skin α-Syn has the potential to be a diagnostic method that not only has excellent sensitivity, specificity, and reproducibility, but also convenient and acceptable to patients. In this review, we (i) integrate the biochemical, aggregation and structural features of α-Syn; (ii) map the distribution of the α-Syn species present in the brain, biological fluids, and peripheral tissues; and (iii) present a critical and comparative analysis of previous studies that have measured α-Syn in the skin. Finally, we provide an outlook on the future of skin biopsy as a diagnostic approach for PD, and highlight its potential implications for clinical trials, clinical decision-making, treatment strategies as well as the development of new therapies.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Reproducibilidad de los Resultados , Cuerpos de Lewy/patología , Biomarcadores
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166597, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36368650

RESUMEN

C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in Parkinson's disease (PD) mice's brains and is related to astrocyte signaling and microglial activation. This makes CXCR4 related to neuroinflammation and also makes CXCR4 considered to be the PD development mechanism and possible therapeutic targets. Therefore, it is worth studying the effect of CXCR4 on neuropathological changes and its potential therapeutic value for PD. This study aimed to investigate the effect of CXCR4 knockout on neuropathological changes in the mouse model of PD and its mechanism. In this study, CXCR4-WT and CXCR4+/- C57BL mice were used to make Parkinson's model. Behavioral experiments, dopaminergic neuron markers, neuroinflammation, and blood-brain barrier damage were detected to verify the effect of CXCR4 knockout on neuropathological changes. CXCR4 knockout improved the behavioral results and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. In the substantia nigra (SN) area of the brain of PD mouse model, the number of Iba1-positive (p = 0.0004) and GFAP-positive cells (p = 0.0349) was significantly lower in CXCR4 knockout group than CXCR4-WT group. CXCR4 knockout reduced MPTP-induced infiltration of peripheral immune cells and the expression of pro-inflammatory cytokines. CXCR4 knockout also protected blood-brain barrier (BBB) from MPTP-induced damage. In conclusion, CXCR4 knockout inhibits the degeneration of dopamine neurons, microglial and astrocyte activation, neuroinflammation, and BBB damages in the MPTP-lesioned PD mice.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL
6.
Oxid Med Cell Longev ; 2022: 7671324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936219

RESUMEN

Background: Ferroptosis is a type of iron-dependent programmed cell death. Ferroptosis has been shown to be a significant factor for the pathogenesis of Parkinson's disease (PD). However, the mechanism involved in ferroptosis has not been fully elucidated in PD. Methods: Repressor element-1 silencing transcription factor (REST) and specificity protein 1 (SP1) expressions were monitored by qRT-PCR. Cell viability, reactive oxygen species (ROS), and mitochondrial injury were validated by CCK-8, flow cytometry, and transmission electron microscope. The levels of neurons-related proteins and ferroptosis-associated proteins were identified by western blot and immunofluorescence assays. The interaction between miR-494-3p and REST or SP1 and ACSL4 was analyzed by luciferase, chromatin immunoprecipitation, or EMSA assay. Results: Erastin could dose-dependently induce neuron injury and ferroptosis of LUHMES cells. miR-494-3p overexpression induced ROS production, mitochondrial damage, ferroptosis, and neuron injury in erastin-induced LUHMES cells. Likewise, miR-494-3p inhibition had the opposite effects. We also showed that REST was a target gene of miR-494-3p and could repress erastin-induced ferroptosis, neuron injury, ROS, and mitochondrial injury via SP1 in LUHMES cells. Moreover, we demonstrated that SP1 could interact with ACSL4. We also confirmed that miR-494-3p could aggravate the pathological changes of substantia nigra and corpus striatum in the MPTP-induced PD mouse model. Conclusion: miR-494-3p significantly promotes ferroptosis by regulating the REST/SP1/ACSL4 axis in PD. Thus, our results open potential therapeutic targets for PD.


Asunto(s)
Ferroptosis , MicroARNs , Enfermedad de Parkinson , Animales , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Parkinson/genética , Piperazinas , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción
7.
Cell Death Discov ; 8(1): 33, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075150

RESUMEN

The current study investigated the physiological mechanisms by which extracellular vesicle (EV)-encapsulated miR-181a-2-3p derived from mesenchymal stem cells (MSCs) might mediate oxidative stress (OS) in Parkinson's disease (PD). First, 6-hydroxydopamine (6-OHDA)-induced PD cell and mouse models were established, after which miR-181a-2-3p, EGR1, and NOX4 expression patterns were determined in SH-SY5Y cells and substantia nigra (SN) of PD mice. Next, the binding affinity among miR-181a-2-3p, EGR1, and NOX4 was identified using multiple assays. Gain- or loss-of-function experiments were further adopted to detect SH-SY5Y cell proliferation and apoptosis and to measure the levels of SOD, MDA, and ROS. Finally, the effects of miR-181a-2-3p from MSC-derived EVs in PD mouse models were also explored. It was found that miR-181a-2-3p was poorly expressed in 6-OHDA-induced SH-SY5Y cells, whereas miR-181a-2-3p from MSCs could be transferred into SH-SY5Y cells via EVs. In addition, miR-181a-2-3p could target and inhibit EGR1, which promoted the expression of NOX4. The aforementioned miR-181a-2-3p shuttled by MSC-derived EVs facilitated SH-SY5Y proliferation and SOD levels, but suppressed apoptosis and MDA and ROS levels by regulating EGR1 via inhibition of NOX4/p38 MAPK, so as to repress OS of PD. Furthermore, in PD mice, miR-181a-2-3p was carried by EVs from MSCs to alleviate apoptosis of dopamine neurons and OS, accompanied by increased expressions of α-syn and decreased 4-HNE in SN tissues. Collectively, our findings revealed that MSC-derived EV-loaded miR-181a-2-3p downregulated EGR1 to inhibit OS via the NOX4/p38 MAPK axis in PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA