RESUMEN
Asthma is a serious public health challenge around the world. Recent studies into traditional Chinese medicine preparations for asthma have yielded promising findings regarding Bailing Capsule's potential in bronchial asthma prevention and treatment. This study aims to initially clarify the potential mechanism of Bailing Capsule in the treatment of asthma using network pharmacology and in vitro experimental approaches. Network pharmacology was adopted to detect the active ingredients of Bailing Capsule via Traditional Chinese Medicine Systems Pharmacology Database, and the key targets and signaling pathways in the treatment of asthma were predicted. Docking and molecular dynamics simulations were conducted to verify the most important interactions formed by these probes within different regions of the binding site. The predicted targets were validated in lipopolysaccharide-induced 16HBE cell experiment. Seven active ingredients were screened from Bailing Capsule, 294 overlapping targets matched with asthma were considered potential therapeutic targets, such as SRC, TP53, STAT3, and E1A binding protein P300. The main functional pathways involving these key targets include phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, renin-angiotensin system and other signaling pathways, which were mainly involved in the inflammatory response, apoptosis, and xenobiotic stimulus. Moreover, molecular docking showed that Cerevisterol have higher affinity for SRC, TP53, STAT3, and E1A binding protein P300 than other main active components, which is close to the docking results of the co-crystallized ligands to proteins. Consequently, Cerevisterol was selected for molecular dynamics simulation and the results show that Cerevisterol can bind most tightly to SRC, TP53, and STAT3. Bailing Capsule can promote the growth of 16HBE cell, reduce the production of IL-4, TNF-α and IL-6, and down-regulate the levels of SRC and STAT3 mRNA. This study preliminarily reveals the potential mechanism of Bailing Capsule against asthma with the aid of network pharmacology and in vitro cell experiment, which provided reference and guidance for in-depth research and clinical application.
Asunto(s)
Asma , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Asma/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Farmacología en Red/métodos , Simulación de Dinámica Molecular , Transducción de Señal/efectos de los fármacos , Línea Celular , Medicina Tradicional China/métodosRESUMEN
PURPOSE: The effects of levetiracetam (LEV) on bone mineral density (BMD) and bone metabolism are currently inconclusive, and this study was designed to answer this question. METHODS: Citations from PubMed, Embase, Cochrane Library, and Web of Science databases (up to February 4, 2024) were reviewed. The effects of LEV on BMD as well as bone metabolism indicators were measured by calculating the standardized mean difference (SMD) with a 95% confidence interval (CI). This study was registered with PROSPERO (CRD42024509560). RESULTS: A total of 612 individuals from 13 studies were included in the present analysis. Of the items related to bone metabolism, LEV was found to be associated significantly with decreased serum calcium with an SMD of -0.47 (95 % CI, -0.77- -0.16; p = 0.04). However, changes in other markers (including serum phosphorus, 25-hydroxyvitamin D, alkaline phosphatase, and parathyroid hormone) were not statistically significantly correlated with the use of LEV (p > 0.05). Also, when compared to the control groups, the changes in BMD of the observation groups were not significant (p > 0.05). CONCLUSIONS: The use of LEV may significantly reduce serum calcium in patients with epilepsy, and regular monitoring of bone metabolism-related indicators is recommended.
Asunto(s)
Anticonvulsivantes , Densidad Ósea , Epilepsia , Levetiracetam , Levetiracetam/uso terapéutico , Levetiracetam/farmacología , Humanos , Densidad Ósea/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Huesos/efectos de los fármacos , Huesos/metabolismo , Calcio/sangre , Calcio/metabolismoRESUMEN
The pharmacokinetic/pharmacodynamic (PK/PD) parameter for evaluating the efficacy of vancomycin is now recommended to target an AUC/MIC (area under the curve, AUC; minimum inhibitory concentration, MIC) ratio of 400 to 600, and trough concentration should not be used as a substitute. We report a case of intracranial infection caused by methicillin-resistant Staphylococcus epidermidis (MRSE), which was sensitive to vancomycin (MIC=2µg/mL) and linezolid (MIC=4µg/mL). The trough concentration of vancomycin in serum was 18.3 µg/mL, and the vancomycin concentration in CSF was 5.0 µg/mL, all within normal range. However, the AUC/MIC ratio was calculated to be 125 mg·h·L-1, unable to reach target AUC/MIC. Vancomycin was replaced with linezolid after 36 days of treatment due to poor outcome, and the patient was eventually cured. Further, 23 cases of intracranial methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant coagulase-negative Staphylococcus (MRCoNS) infections were reported, of which 1 case with MRSA had a vancomycin MIC of 1 µg/mL, while the remaining 22 cases had vancomycin MICs >1 µg/mL. The linezolid-containing regimen was used after drug susceptibility results or if the initial treatment failed, leading to recovery in 19 patients, microbial clearance in 3 patients, and treatment failure in 1 case. In conclusion, vancomycin dosing should be based on AUC-guided dosing and monitoring. When the vancomycin MIC of MRSA/MRCoNS is >1 µg/mL, the target AUC/MIC may not be achieved. In such cases, linezolid can effectively be considered as a good alternative to vancomycin.
RESUMEN
OBJECTIVES: Epithelial growth factor receptor (EGFR), as a malignancy marker, is overly expressed in multiple solid tumors including colorectal neoplasms, one of the most prevalent malignancies worldwide. The main objective of this study is to enhance the efficacy of anti-tumor therapy targeting EGFR by constructing a novel EGFR-specific immunotoxin (C-CUS245C) based on Cetuximab and recombinant Cucurmosin (CUS245C). METHODS: E. coli BL21 (DE3) PlysS (E. coli) was used to express CUS245C with a cysteine residue inserting to the C-terminus of Cucurmosin. Then immobilized metal ion affinity chromatography (IMAC) was used to purify CUS245C. The chemical conjugation method was used for the preparation of C-CUS245C. Then dialysis and IMAC were used to purify C-CUS245C. Western blot as well as SDS-PAGE was carried out to characterize the formation of C-CUS245C. At last the anti-colorectal cancer activity of C-CUS245C was investigated in vitro and in vivo. RESULTS: CUS245C with high purity could be obtained from the prokaryotic system. C-CUS245C was successfully constructed and highly purified. The cytotoxicity assays in vitro showed a significant proliferation inhibition of C-CUS245C on EGFR-positive cells for 120 h with IC50 values less than 0.1 pM. Besides, the anti-tumor efficacy of C-CUS245C was remarkably more potent than that of Cetuximab, CUS245C, and C + CUS245C (P < 0.001). Whereas the cytotoxicity of C-CUS245C could hardly be detected on EGFR-null cell line. Our results also showed that C-CUS245C had efficacy of anti-colorectal cancer in mouse xenograft model, indicating the therapeutic potential of C-CUS245C for the targeted therapy of colorectal neoplasms. CONCLUSIONS: C-CUS245C exhibits potent and EGFR-specific cytotoxicity. Insertional mutagenesis technique is worthy to be adopted in the preparation of immunotoxin. Immunotoxin can be highly purified through dialysis followed by IMAC.
Asunto(s)
Cetuximab/uso terapéutico , Neoplasias Colorrectales/terapia , Inmunotoxinas/uso terapéutico , Terapia Molecular Dirigida/métodos , Proteínas de Plantas/uso terapéutico , Animales , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab/farmacología , Cromatografía de Afinidad/métodos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Escherichia coli/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Inmunotoxinas/química , Inmunotoxinas/aislamiento & purificación , Inmunotoxinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutagénesis Insercional/métodos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Factores de Tiempo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Trastuzumab is a humanized monoclonal antibody against HER2 approved by FDA for breast and gastric cancer therapy. However, only a quarter of patients have the potential to benefit from it, and most of them develop resistance within therapy. The main purpose of this study is to broaden trastuzumab's therapeutic window by conjugating trastuzumab with recombinant cucurmosin to form an immunotoxin called T-CUS245C. T-CUS245C was chemically conjugated and the purification of T-CUS245C was evaluated by SDS-PAGE. SRB tests showed a remarkable cytotoxicity of T-CUS245C with IC50 values in picomolar range on HER2 positive cancer cells without significantly proliferation inhibition on HER2 negative cells (Pâ¯<â¯0.01). Confocal microscopy verified the time-dependent internalization effects of T-CUS245C and revealed that the lethal efficacy can be increased by provoking the internalization. These results indicate the therapeutic potential of T-CUS245C for the HER-2 targeted therapy.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Proteínas de Plantas/farmacología , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cucurbita/química , Femenino , Humanos , Inmunotoxinas/química , Inmunotoxinas/farmacología , Terapia Molecular Dirigida , Neoplasias Ováricas/metabolismo , Proteínas de Plantas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Trastuzumab/químicaRESUMEN
Epidermal growth factor receptor (EGFR) overexpression is related to the increased aggressiveness, metastases, and poor prognosis in various cancers. In this study, we successfully constructed a new EGFR nanobody-based immunotoxin rE/CUS containing cucurmosin (CUS), The immunotoxin was expressed by prokaryotic system and we obtained a yield of 5 mg protein per liter expression medium. The percentage of it's binding ability totumor cell lines A549, HepG2, SW116, which highly expressed EGFR was 55.6%, 79.6% and 97.1%, respectively, but SW620 was only 4.45%. rE/CUS has the ability to bind A549, HepG2, SW116 cells specifically, and the antigen binding capability was not affected because of extra part of CUS component. The rE/CUS significantly inhibited the cell viability against EGFR over expression tumor cell lines in a dose-and time-dependent manner. Moreover, rE/CUS also induced apoptosis of HepG2 and A549 mightily. Our results demonstrate that rE/CUS is a potential therapeutic strategy for treating EGFR-positive solid tumors.