RESUMEN
BACKGROUND: The impact of the gut microbiome on the initiation and intensity of immune-related adverse events (irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency in the gut microbial associations with irAEs reported across various studies. METHODS: We performed a comprehensive analysis leveraging a dataset that included published microbiome data (n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115). We utilized a machine learning-based approach, specifically the Random Forest (RF) algorithm, to construct a microbiome-based classifier capable of distinguishing between non-irAEs and irAEs. Additionally, we conducted a comprehensive analysis, integrating transcriptome and metagenome profiling, to explore potential underlying mechanisms. RESULTS: We identified specific microbial species capable of distinguishing between patients experiencing irAEs and non-irAEs. The RF classifier, developed using 14 microbial features, demonstrated robust discriminatory power between non-irAEs and irAEs (AUC = 0.88). Moreover, the predictive score from our classifier exhibited significant discriminative capability for identifying non-irAEs in two independent cohorts. Our functional analysis revealed that the altered microbiome in non-irAEs was characterized by an increased menaquinone biosynthesis, accompanied by elevated expression of rate-limiting enzymes menH and menC. Targeted metabolomics analysis further highlighted a notably higher abundance of menaquinone in the serum of patients who did not develop irAEs compared to the irAEs group. CONCLUSIONS: Our study underscores the potential of microbial biomarkers for predicting the onset of irAEs and highlights menaquinone, a metabolite derived from the microbiome community, as a possible selective therapeutic agent for modulating the occurrence of irAEs.
Asunto(s)
Antineoplásicos Inmunológicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Enfermedades del Sistema Inmune , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , ARN Ribosómico 16S/genética , Vitamina K 2/uso terapéutico , Inmunoterapia/efectos adversos , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológicoRESUMEN
As a municipal solid waste, waste glass undergoes pozzolanic activity when ground to a certain fineness. In this paper, calcium carbide residue (CCR) and Na2CO3 were used as composite alkali activators for a glass powder-based composite cementitious system. A total of 60% fly ash (FA) and 40% ground granulated blast furnace slag (GGBS) were used as the reference group of the composite cementitious material system, and the effects of 5%, 10%, 15%, and 20% glass powder (GP) replacing FA on the rheological behavior, mechanical properties, and microstructure of alkali-activated composite cementitious systems were investigated. The results showed that with the increase in GP replacing FA, the fluidity of the alkali-activated materials gradually decreased, the shear stress and the equivalent plastic viscosity both showed an increasing trend, and the paste gradually changed from shear thinning to shear thickening. Compared with the reference sample, the fluidity of the alkali-activated material paste with a 20% GP replacement of FA was reduced by 15.3%, the yield shear stress was increased by 49.6%, and the equivalent plastic viscosity was elevated by 32.1%. For the 28d alkali-activated material pastes, the compressive strength and flexural strength were increased by 13% and 20.3%, respectively. The microstructure analysis showed the substitution of FA by GP promoted the alkali-activated reaction to a certain extent, and more C-A-S-H gel was formed.
RESUMEN
Our previous research defined a novel metabolic cancer associated fibroblasts subset (meCAFs) enriched in loose-type pancreatic ductal adenocarcinoma (PDAC) and related to CD8+ T cells accumulation. Consistently, the abundance of meCAFs was associated with poor prognosis but better immunotherapy responses in PDAC patients. However, the metabolic characteristic of meCAFs and its cross-talk with CD8+ T cells remain to be elucidated. In this study, we identified PLA2G2A as a marker of meCAFs. In particular, the abundance of PLA2G2A+ meCAFs was positively related to the accumulation of total CD8+ T cells and negatively correlated with clinical outcomes of PDAC patients and infiltration of intratumoral CD8+ T cells. We demonstrated that PLA2G2A+ meCAFs substantially attenuated the antitumor ability of tumor infiltrating CD8+ T cells and facilitated tumor immune escape in PDAC. Mechanistically, PLA2G2A regulated the function of CD8+ T cells as a pivotal soluble mediator via MAPK/Erk and NF-κB signaling pathways. In conclusion, our study identified the unrecognized role of PLA2G2A+ meCAFs in promoting tumor immune escape by impeding the antitumor immune function of CD8+ T cells, and strongly suggested PLA2G2A as a promising biomarker and therapeutic target for immunotherapy in PDAC.
Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T Citotóxicos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Inmunidad , Microambiente Tumoral , Fosfolipasas A2 Grupo II , Neoplasias PancreáticasRESUMEN
We report on the experimental and numerical observations of synchronization and desynchronization of bound states of multiple breathing solitons (breathing soliton molecules) in an ultrafast fiber laser. In the desynchronization regime, although the breather molecules as wholes are not synchronized to the cavity, the individual breathers within a molecule are synchronized to each other with a delay (lag synchronization). An intermediate regime between the synchronization and desynchronization phases is also observed, featuring self-modulation of the synchronized state. This regime may also occur in other systems displaying synchronization. Breathing soliton molecules in a laser cavity open new avenues for the study of nonlinear synchronization dynamics.
RESUMEN
Nonlinear systems with two competing frequencies show locking or resonances. In lasers, the two interacting frequencies can be the cavity repetition rate and a frequency externally applied to the system. Conversely, the excitation of breather oscillations in lasers naturally triggers a second characteristic frequency in the system, therefore showing competition between the cavity repetition rate and the breathing frequency. Yet, the link between breathing solitons and frequency locking is missing. Here we demonstrate frequency locking at Farey fractions of a breather laser. The winding numbers exhibit the hierarchy of the Farey tree and the structure of a devil's staircase. Numerical simulations of a discrete laser model confirm the experimental findings. The breather laser may therefore serve as a simple test bed to explore ubiquitous synchronization dynamics of nonlinear systems. The locked breathing frequencies feature a high signal-to-noise ratio and can give rise to dense radio-frequency combs, which are attractive for applications.
RESUMEN
Despite their excellent performance, two-dimension nanomaterials have certain limitations in improving the performance of cement-based materials due to their poor dispersity in the alkaline environment. This paper has synthesized a new two-dimension stacked GO-SiO2 (GOS) hybrid through the sol-gel method. Nano-SiO2 is coated on the surface of GO with wrinkling characteristics, and the atomic ratio of C, O, and Si in GOS is 1:1.69:0.57. The paper discusses the impacts on the spreading, Marsh cone flow time, rheological properties, mechanical properties, and microstructure of cement-based materials for the GOS at different mixing quantities. Furthermore, with the same mixing quantity of 0.01%, the influences on the dispersity, flow properties, rheological parameters, and mechanical properties of GOS and graphene oxide (GO) are compared. Lastly, fuzzy matrix analysis has been adopted to analyze the comprehensive performance of cement-based materials containing GOS. The research results indicate that, compared with the reference sample, the spreading for the GOS cement mortar with 0.01% mixing quantity was reduced by 4.76%, the yield shear stress increased by 37.43%, and the equivalent plastic viscosity was elevated by 2.62%. In terms of the 28 d cement pastes, the compressive and flexural strength were boosted by 27.17% and 42.86%, respectively. According to the optical observation, GOS shows better dispersion stability in the saturated calcium hydroxide solution and simulated pore solution than GO. Compared with the cement-based materials with the same mixing quantity (0.01%), GOS has higher spreading, lower shear yield stress, and higher compressive and flexural strength than GO. Finally, according to the results of fuzzy matrix analysis, when the concentration of GOS is 0.01%, it presents a more excellent comprehensive performance with the highest score. Among the performance indicators, the most significant improvement was in the flexural properties of cement-based materials, which increased from 8.6 MPa to 12.3 MPa on the 28 d.
RESUMEN
We report a passive stabilization of the repetition rate for a mode-locked fiber laser by using an electro-optic modulator in a phase-biased nonlinear amplifying loop mirror. The underlying mechanism, in contrast to active feedback operations, lies in the cross-phase modulation between electrical and optical pulses within an electro-optic crystal. The resulting spectral shift can automatically compensate for the cavity-length drift via the group velocity dispersion. Consequently, the artificial actuator enables a capture range up to 2.3 mm, much longer than that achieved by index changes of the modulator. A robust and tight locking for the repetition rate is then realized with a standard deviation as low as 9 µHz with a 1-s sample time over 11 hours, corresponding to a fractional instability of 4.3 × 10-13. Furthermore, a dynamic optical sampling by repetition-rate tuning has been manifested with a fast refresh rate at 100 kHz and a broad scanning range over 305 ps. The demonstrated passive servo action may provide a simple yet effective way to stabilize the repetition rate with high precision, large bandwidth, and wide tunability.
RESUMEN
Nowadays, the novel coronavirus (COVID-19) is spreading around the world and has attracted extremely wide public attention. From the beginning of the outbreak to now, there have been many mathematical models proposed to describe the spread of the pandemic, and most of them are established with the assumption that people contact with each other in a homogeneous pattern. However, owing to the difference of individuals in reality, social contact is usually heterogeneous, and the models on homogeneous networks cannot accurately describe the outbreak. Thus, we propose a susceptible-asymptomatic-infected-removed (SAIR) model on social networks to describe the spread of COVID-19 and analyse the outbreak based on the epidemic data of Wuhan from January 24 to March 2. Then, according to the results of the simulations, we discover that the measures that can curb the spread of COVID-19 include increasing the recovery rate and the removed rate, cutting off connections between symptomatically infected individuals and their neighbours, and cutting off connections between hub nodes and their neighbours. The feasible measures proposed in the paper are in fair agreement with the measures that the government took to suppress the outbreak. Furthermore, effective measures should be carried out immediately, otherwise the pandemic would spread more rapidly and last longer. In addition, we use the epidemic data of Wuhan from January 24 to March 2 to analyse the outbreak in the city and explain why the number of the infected rose in the early stage of the outbreak though a total lockdown was implemented. Moreover, besides the above measures, a feasible way to curb the spread of COVID-19 is to reduce the density of social networks, such as restricting mobility and decreasing in-person social contacts. This work provides a series of effective measures, which can facilitate the selection of appropriate approaches for controlling the spread of the COVID-19 pandemic to mitigate its adverse impact on people's livelihood, societies and economies.
RESUMEN
Nickel nitride (Ni3N) is a superior hydrogen evolution reaction (HER) catalyst where the nitrogen source is usually ammonia and the reaction temperature is high during the synthesis process. Herein, we employed an innovative method to obtain three-dimensional porous nickel nitride nanosheets on Ni foam (Ni3N/NF) by transforming Ni(OH)2 nanosheets in N2-H2 glow discharge plasma. The obtained Ni3N/NF displays a high HER activity with a small overpotential of 44 mV and a low Tafel slope of 46 mV dec-1, which is competitive to a Pt/C catalyst. Both the test data and simulation results prove that active ions and radicals in plasma play essential roles in achieving the facile nitridation, as well as building a nanostructured morphology over the Ni3N/NF surface. The unique synthesis method opens new avenues for metal nitrides of HER catalysts and beyond.
RESUMEN
Adoptive immunotherapy based on chimeric antigen receptor-modified T (CAR-T) cells has been demonstrated as one of the most promising therapeutic strategies in the treatment of malignancies. However, CAR-T cell therapy has shown limited efficacy for the treatment of solid tumors. This is, in part, because of tumor heterogeneity and a hostile tumor microenvironment, which could suppress adoptively transferred T cell activity. In this study, we, respectively, engineered human- or murine-derived-armored glypican-3 (GPC3)-specific CAR-T cells capable of inducibly expressing IL-12 (GPC3-28Z-NFAT-IL-12) T cells. The results showed that GPC3-28Z-NFAT-IL-12 T cells could lyse GPC3+ tumor cells specifically and increase cytokine secretion compared with GPC3-28Z T cells in vitro. In vivo, GPC3-28Z-NFAT-IL-12 T cells augmented the antitumor effect when encountering GPC3+ large tumor burdens, which could be attributed to IL-12 increasing IFN-γ production, favoring T cells infiltration and persistence. Furthermore, in immunocompetent hosts, low doses of GPC3-m28Z-mNFAT-mIL-12 T cells exerted superior antitumor efficacy without prior conditioning in comparison with GPC3-m28Z T cells. Also, mIL-12 secretion decreased regulatory T cell infiltration in established tumors. In conclusion, these findings demonstrated that the inducible expression of IL-12 could boost CAR-T function with less potential side effects, both in immunodeficient and immunocompetent hosts. The inducibly expressed IL-12-armored GPC3-CAR-T cells could broaden the application of CAR-T-based immunotherapy to patients intolerant of lymphodepletion chemotherapy and might provide an alternative therapeutic strategy for patients with GPC3+ cancers.
Asunto(s)
Carcinoma Hepatocelular/terapia , Glipicanos/metabolismo , Inmunoterapia Adoptiva/métodos , Interleucina-12/metabolismo , Neoplasias Hepáticas/terapia , Linfocitos Infiltrantes de Tumor/fisiología , Animales , Carcinoma Hepatocelular/inmunología , Glipicanos/genética , Glipicanos/inmunología , Células HEK293 , Humanos , Interleucina-12/genética , Interleucina-12/inmunología , Neoplasias Hepáticas/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Ratones , Ratones Endogámicos C57BL , Ingeniería de Proteínas , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Microambiente Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Our previous study indicated that GPC3-targeted chimeric antigen receptor (CAR) T cell therapy has a high safety profile in patients with hepatocellular carcinoma (HCC). However, the response rate requires further improvement. Here, we analyzed the combined effect of GPC3-CAR T cells and sorafenib in both immunocompetent and immunodeficient mouse models of hepatocellular carcinoma. In immunocompetent mouse model, mouse CAR (mCAR) T cells induced regression of small tumors (approximately 130 mm3 tumor volume) but had no effect on large, established tumors (approximately 400 mm3 tumor volume). Sorafenib, at a subpharmacologic but not a pharmacologic dose, augmented the antitumor effects of mCAR T cells, in part by promoting IL12 secretion in tumor-associated macrophages (TAMs) and cancer cell apoptosis. In an immunodeficient mouse model, both subpharmacologic and pharmacologic doses of sorafenib had limited impacts on the function of human CAR (huCAR) T cells in vitro and showed synergistic effects with huCAR T cells in vivo, which can at least partially be ascribed to the upregulated tumor cell apoptosis induced by the combined treatment. Thus, this study applied two of the most commonly used mouse models for CAR T cell research and demonstrated the clinical potential of combining sorafenib with GPC3-targeted CAR T cells against HCC.
Asunto(s)
Carcinoma Hepatocelular/inmunología , Glipicanos/antagonistas & inhibidores , Inmunoterapia Adoptiva , Neoplasias Hepáticas/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Sorafenib/farmacología , Linfocitos T/inmunología , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
While nickel phosphide is a highly attractive catalyst for the hydrogen evolution reaction, its preparation requires either high temperature or the use of highly toxic PH3 directly or indirectly. Herein, we demonstrate that H2 plasma activated red phosphorus enables the synthesis of self-supported Ni2P nanosheet (Ni2P/NF) arrays on commercial nickel foam from a NiO/NF precursor at only 250 °C. Highly reactive atomic H in the plasma induces dissociation of the P4 molecules, yielding an acid stable electrode with excellent hydrogen evolution activity and good mechanical strength.
RESUMEN
IL12 is an immune-stimulatory cytokine for key immune cells including T cells and NK cells. However, systemic administration of IL12 has serious side effects that limit its clinical application in patients. Recently, synthetic Notch (synNotch) receptors have been developed that induce transcriptional activation and deliver therapeutic payloads in response to the reorganization of specific antigens. NK92 cell is a human natural killer (NK) cell line which has been developed as tools for adjuvant immunotherapy of cancer. Here, we explored the possibility of using synNotch receptor-engineered NK92 cells to selectively secrete IL12 at the tumor site and increase the antitumor activities of chimeric antigen receptor (CAR)-modified T cells. Compared with the nuclear factor of activated T-cells (NFATs) responsive promoter, which is another regulatory element, the synNotch receptor was better at controlling the expression of cytokines. NK92 cells transduced with the GPC3-specific synNotch receptor could produce the proinflammatory cytokine IL12 (GPC3-Syn-IL12-NK92) in response to GPC3 antigen expressed in cancer cells. In vivo GPC3-Syn-IL12-NK92 cells controlling IL12 production could enhance the antitumor ability of GPC3-redirected CAR T cells and increase the infiltration of T cells without inducing toxicity. Taken together, our results demonstrated that IL12 supplementation by synNotch-engineered NK92 cells could secrete IL12 in a target-dependent manner, and promote the antitumor efficiency of CAR-T cells. Local expression of IL12 by synNotch-engineered NK92 cells might be a safe approach to enhance the clinical outcome of CAR-T cell therapy.
RESUMEN
Cancer immunotherapy has made unprecedented breakthrough in the fields of chimeric antigen receptor-redirected T (CAR T) cell therapy and immune modulation. Combination of CAR modification and the disruption of endogenous inhibitory immune checkpoints on T cells represent a promising immunotherapeutic modality for cancer treatment. However, the potential for the treatment of hepatocellular carcinoma (HCC) has not been explored. In this study, the gene expressing the programmed death 1 receptor (PD-1) on the Glypican-3 (GPC3)-targeted second-generation CAR T cells employing CD28 as the co-stimulatory domain was disrupted using the CRISPR/Cas9 gene-editing system. It was found that, in vitro, the CAR T cells with the deficient PD-1 showed the stronger CAR-dependent anti-tumor activity against native programmed death 1 ligand 1-expressing HCC cell PLC/PRF/5 compared with the wild-type CAR T cells, and meanwhile, the CD4 and CD8 subsets, and activation status of CAR T cells were stable with the disruption of endogenous PD-1. Additionally, the disruption of PD-1 could protect the GPC3-CAR T cells from exhaustion when combating with native PD-L1-expressing HCC, as the levels of Akt phosphorylation and anti-apoptotic protein Bcl-xL expression in PD-1 deficient GPC3-CAR T cells were significantly higher than those in wild-type GPC3-CAR T cells after coculturing with PLC/PRF/5. Furthermore, the in vivo anti-tumor activity of the CAR T cells with the deficient PD-1 was investigated using the subcutaneous xenograft tumor model established by the injection of PLC/PRF/5 into NOD-scid-IL-2Rγ-/- (NSG) mice. The results indicated that the disruption of PD-1 enhanced the in vivo anti-tumor activity of CAR T cells against HCC, improved the persistence and infiltration of CAR T cells in the NSG mice bearing the tumor, and strengthened the inhibition of tumor-related genes expression in the xenograft tumors caused by the GPC3-CAR T cells. This study indicates the enhanced anti-tumor efficacy of PD-1-deficient CAR T cells against HCC and suggests the potential of precision gene editing on the immune checkpoints to enhance the CAR T cell therapies against HCC.
RESUMEN
Our recent clinical study demonstrated that glypican-3 (GPC3)-specific chimeric antigen receptor-modified T (CAR-T) cells are a promising treatment for hepatocellular carcinoma (HCC). However, the interaction of programmed cell death 1 (PD-1) and PD-L1-mediated T-cell inhibition is involved in immune evasion in a wide range of solid tumors, including HCC. To overcome this problem, we introduced a fusion protein composed of a PD-1 extracellular domain and CH3 from IgG4 into GPC3-specific CAR-T cells (GPC3-28Z) to block the PD-1/PD-L1 pathway. GPC3-specific CAR-T cells carrying the PD-1-CH3 fusion protein (sPD1) specifically recognized and lysed GPC3-positive HCC cells. The proliferation capacity of GPC3-28Z-sPD1 T cells after weekly stimulation with target cells was much higher than that of control GPC3-28Z T cells. Additionally, the coexpression of sPD1 could protect CAR-T cells from exhaustion when incubated with target cells, as phosphorylated AKT and Bcl-xL expression levels were higher in GPC3-28Z-sPD1 T cells than in GPC3-28Z cells. Importantly, in two HCC tumor xenograft models, GPC3-28Z-sPD1 T cells displayed a significantly higher tumor suppression capacity than GPC3-28Z T cells. In addition, an increased number of CD3+ T cells in the circulation and tumors and increased granzyme B levels and decreased Ki67 expression levels in the tumors were observed in the mice treated with GPC3-28Z-sPD1 T cells. Together, these data indicated that GPC3-specific CAR-T cells carrying sPD1 show promise as a treatment for patients with HCC.
Asunto(s)
Carcinoma Hepatocelular/inmunología , Glipicanos/inmunología , Inmunoglobulina G/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/inmunología , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/prevención & control , Células Cultivadas , Glipicanos/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevención & control , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor de Muerte Celular Programada 1/metabolismo , Dominios Proteicos , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Chimeric antigen receptor (CAR)-modified natural killer (NK) cells represent a promising immunotherapeutic modality for cancer treatment. However, their potential utilities have not been explored in hepatocellular carcinoma (HCC). Glypian-3 (GPC3) is a rational immunotherapeutic target for HCC. In this study, we developed GPC3-specific NK cells and explored their potential in the treatment of HCC. The NK-92/9.28.z cell line was established by engineering NK-92, a highly cytotoxic NK cell line with second-generation GPC3-specific CAR. Exposure of GPC3+ HCC cells to this engineered cell line resulted in significant in vitro cytotoxicity and cytokine production. In addition, soluble GPC3 and TGF-ß did not significantly inhibit the cytotoxicity of NK-92/9.28.z cells in vitro, and no significant difference in anti-tumor activities was observed in hypoxic (1%) conditions. Potent anti-tumor activities of NK-92/9.28.z cells were observed in multiple HCC xenografts with both high and low GPC3 expression, but not in those without GPC3 expression. Obvious infiltration of NK-92/9.28.z cells, decreased tumor proliferation, and increased tumor apoptosis were observed in the GPC3+ HCC xenografts. Similarly, efficient retargeting on primary NK cells was achieved. These results justified clinical translation of this GPC3-specific, NK cell-based therapeutic as a novel treatment option for patients with GPC3+ HCC.
Asunto(s)
Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Glipicanos/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Receptores Quiméricos de Antígenos/metabolismo , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Epítopos , Expresión Génica , Orden Génico , Vectores Genéticos/genética , Glipicanos/genética , Xenoinjertos , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva , Lentivirus/genética , Ratones , Fenotipo , Receptores Quiméricos de Antígenos/genética , Transducción GenéticaRESUMEN
The incorporation of an endogenous safety switch represents a rational strategy for the control of toxicities following the administration of adoptive T cell therapies. An ideal safety switch should be capable of depleting the transferred T cells with minimal injury to normal tissues. We generated a fusion receptor by engineering a cryptic 806 epitope of human epidermal growth factor receptor (EGFR) into the N terminus of the full-length human folate receptor 1 (FOLR1), designated as FR806. The expression of FR806 allows transduced T cells to be targeted with CH12, a monoclonal antibody recognizing the 806 epitope, but not wild-type EGFR in healthy tissues. FR806, therefore, constitutes a specific cell-surface marker for the elimination of transduced T cells. We demonstrate that the antibody-drug conjugate (ADC) CH12-MMAF is efficiently internalized by FR806-expressing T cells and has the potential to eliminate them. Transfected T cells could, furthermore, be efficiently detected and purified using CH12 antibodies. In immuno-compromised mice, CH12-MMAF eliminated the majority of transferred T cells expressing FR806 and anti-CD19 chimeric antigen receptor (CAR). The selectivity for the 806 epitope and internalization capacity of FOLR1 makes FR806 an efficient safety switch, which may additionally be used as a detection and purification biomarker for human T cell immunotherapies.
Asunto(s)
Traslado Adoptivo/métodos , Biomarcadores/sangre , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Ratones , Ratones SCID , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Epidermal growth factor receptor (EGFR), a well-known oncogenic driver, contributes to the initiation and progression of a wide range of cancer types. Aberrant lipid metabolism including highly produced monounsaturated fatty acids (MUFA) is recognized as a hallmark of cancer. However, how EGFR regulates MUFA synthesis in cancer remains elusive. This is the focus of our study. METHODS: The interaction between EGFR and stearoyl-CoA desaturase-1 (SCD1) was detected byco-immunoprecipitation. SCD1 protein expression, stability and phosphorylation were tested by western blot. The synthesis of MUFA was determined by liquid chromatography-mass spectrometry. The growth of lung cancer was detected by CCK-8 assay, Annexin V/PI staining, colony formation assay and subcutaneous xenograft assay. The expression of activated EGFR, phosphorylated and total SCD1 was tested by immunohistochemistry in 90 non-small cell lung cancersamples. The clinical correlations were analyzed by Chi-square test, Kaplan-Meier survival curve analysis and Cox regression. RESULTS: EGFR binds to and phosphorylates SCD1 at Y55. Phosphorylation of Y55 is required for maintaining SCD1 protein stability and thus increases MUFA level to facilitate lung cancer growth. Moreover, EGFR-stimulated cancer growth depends on SCD1 activity. Evaluation of non-small cell lung cancersamples reveals a positive correlation among EGFR activation, SCD1 Y55 phosphorylation and SCD1 protein expression. Furthermore, phospho-SCD1 Y55 can serve as an independent prognostic factor for poor patient survival. CONCLUSIONS: Ourstudy demonstrates that EGFR stabilizes SCD1 through Y55 phosphorylation, thereby up-regulating MUFA synthesis to promote lung cancer growth. Thus, we provide the first evidence that SCD1 can be subtly controlled by tyrosine phosphorylation and uncover a previously unknown direct linkage between oncogenic receptor tyrosine kinase and lipid metabolism in lung cancer. We also propose SCD1 Y55 phosphorylation as a potential diagnostic marker for lung cancer.
Asunto(s)
Receptores ErbB/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Neoplasias Pulmonares/metabolismo , Fosforilación/fisiología , Estearoil-CoA Desaturasa/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Células HEK293 , Humanos , Estimación de Kaplan-MeierRESUMEN
Silica can be converted to silicon by magnesium reduction. Here, this classical reaction is renovated for more efficient preparation of silicon nanoparticles (nano-Si). By reducing the particle size of the starting materials, the reaction can be completed within 10 min by mechanical milling at ambient temperature. The obtained nano-Si with high surface reactivity are directly reacted with 1-pentanol to form an alkoxyl-functionalized hydrophobic colloid, which significantly simplifies the separation process and minimizes the loss of small Si particles. Nano-Si in 5 g scale can be obtained in one single batch with laboratory scale setups with very high yield of 89%. Utilizing the excellent dispersion in ethanol of the alkoxyl-functionalized nano-Si, surface carbon coating can be readily achieved by using ethanol soluble oligomeric phenolic resin as the precursor. The nano-Si after carbon coating exhibit excellent lithium storage performance comparable to the state of the art Si-based anode materials, featured for the high reversible capacity of 1756 mAh·g-1 after 500 cycles at a current density of 2.1 A·g-1. The preparation approach will effectively promote the development of nano-Si-based anode materials for lithium-ion batteries.