Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Integr Med Res ; 12(2): 100944, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37122486

RESUMEN

Background: Rotavirus enteritis (RVE) accounts for 37% of all death in children (<5 years) with diarrhea. Chinese herbal injections (CHIs) have drawn more attention from practitioners because of the valid effects for RVE. However, the most beneficial one has not yet been determined. Methods: Eight databases were searched from their inception up to September 3rd, 2022. The primary outcome was clinical effective rate and the secondary outcomes were time for disappearance of diarrhea, time of defervescence, time for disappearance of vomiting, and adverse drug reactions or adverse drug events. OpenBUGS 3.2.3 and STATA 14.0 software were employed to carry out the NMA. Results: 58 randomized controlled trials (RCTs) with 6436 child patients were included in this Bayesian NMA. Four CHIs were investigated including Yanhuning injection (YHN), Xiyanping injection (XYP), Reduning injection (RDN), and Zedoary Turmeric Oil injection (ZTO). The results showed that YHN [OR=6.16, 95% CI (4.39, 8.77)] had a superior effect in improving clinical effective rate compared to Ribavirin based on Western medicine (WM). According to SUCRA values, YHN (84.1%) ranked highest. As for the secondary outcomes, XYP was the better intervention in shortening the time for disappearance of diarrhea. Regarding time for defervescence, RDN had obvious advantages and also performed well in time for disappearance of vomiting. Conclusion: CHIs combined with WM could be beneficial than Ribavirin in improving clinical effective rate, and YHN was the optimum treatment. From the comprehensive evaluations of both the clinical effective rate and other outcomes, YHN also indicated a favorable therapeutic effect in RVE. Study registration: PROSPERO, CRD42022357149.

2.
Int J Nanomedicine ; 18: 1413-1431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992821

RESUMEN

Background: Corneal neovascularization (NV) is a process of abnormal vessel growth into the transparent cornea from the limbus and can disturb the light passing through the cornea, resulting in vision loss or even blindness. The use of nanomedicine as an effective therapeutic formulation in ophthalmology has led to higher drug bioavailability and a slow drug release rate. In this research, we designed and explored the feasibility of a new nanomedicine, gp91 ds-tat (gp91) peptide-encapsulated gelatin nanoparticles (GNP-gp91), for inhibiting corneal angiogenesis. Methods: GNP-gp91 were prepared by a two-step desolvation method. The characterization and cytocompatibility of GNP-gp91 were analyzed. The inhibition effect of GNP-gp91 on HUVEC cell migration and tube formation was observed by an inverted microscope. The drug retention test in mouse cornea was observed by in vivo imaging system, fluorescence microscope, and DAPI/TAMRA staining. Finally, the therapeutic efficacy and evaluation of neovascularization-related factors were conducted through the in vivo corneal NV mice model via topical delivery. Results: The prepared GNP-gp91 had a nano-scale diameter (550.6 nm) with positive charge (21.7 mV) slow-release behavior (25%, 240hr). In vitro test revealed that GNP-gp91 enhanced the inhibition of cell migration and tube formation capacity via higher internalization of HUVEC. Topical administration (eyedrops) of the GNP-gp91 significantly prolongs the retention time (46%, 20 min) in the mouse cornea. In chemically burned corneal neovascularization models, corneal vessel area with a significant reduction in GNP-gp91 group (7.89%) was revealed when compared with PBS (33.99%) and gp91 (19.67%) treated groups via every two days dosing. Moreover, GNP-gp91 significantly reduced the concentration of Nox2, VEGF and MMP9 in NV's cornea. Conclusion: The nanomedicine, GNP-gp91, was successfully synthesized for ophthalmological application. These data suggest that GNP-gp91 contained eyedrops that not only have a longer retention time on the cornea but also can treat mice corneal NV effectively delivered in a low dosing frequency, GNP-gp91 eyedrops provides an alternative strategy for clinical ocular disease treatment in the culture.


Asunto(s)
Neovascularización de la Córnea , Nanopartículas , Ratones , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Gelatina/farmacología , Soluciones Oftálmicas/farmacología , Córnea , Péptidos/farmacología , Nanopartículas/química
3.
Microb Drug Resist ; 28(2): 153-160, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34609911

RESUMEN

Aeromonas hydrophila is a Gram-negative bacterium that is a critical causative agent of infections in fish and is occasionally responsible for human infections following contact with contaminated water or food. Currently, the extensive use of antibiotics in clinical practice has led to increased number of isolates of multidrug-resistant (MDR) Aeromonas and has posed a serious public health challenge. The efflux pump system is a critical mechanism of antibiotic resistance in most Gram-negative bacteria. However, the role of resistance-nodulation-division (RND)-type efflux pumps in MDR A. hydrophila is not fully understood. We aimed to evaluate the contribution of the RND efflux pump system to MDR A. hydrophila clinical isolates. PCR results indicated a considerable variation in the presence of RND efflux pump genes in clinical isolates compared to that of the environmental reference strain ATCC7966T. Compared to non-MDR clinical isolates, the expression levels of three putative RND efflux pump genes, AHA0021, AHA1320, and AheB, were significantly elevated in MDR strains. The minimal inhibitory concentrations of piperacillin/tazobactam, imipenem, erythromycin, and polymyxin B were significantly reduced by phenylalanine-arginine ß-naphthylamide (PAßN), further supporting the contribution of the RND efflux system in MDR A. hydrophila. We provided evidence supporting the contribution of the RND efflux system to multidrug resistance in A. hydrophila clinical isolates. Further studies are warranted to elucidate the detailed mechanisms that confer intrinsic resistance to antimicrobials in A. hydrophila.


Asunto(s)
Aeromonas hydrophila/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Genes Bacterianos/genética , Proteínas de Transporte de Membrana/genética , Aeromonas hydrophila/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
4.
Arch Biochem Biophys ; 671: 167-174, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31295433

RESUMEN

In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Epigénesis Genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo
5.
Plant J ; 90(6): 1064-1078, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28267232

RESUMEN

DICER-LIKE (DCL) enzymes process double-stranded RNA into small RNAs that act as regulators of gene expression. Arabidopsis DCL4 and DCL2 each allow the post-transcriptional gene silencing (PTGS) of viruses and transgenes, but primary PTGS-prone DCL4 outcompetes transitive PTGS-prone DCL2 in wild-type plants. This hierarchy likely prevents DCL2 having any detrimental effects on endogenous genes. Indeed, dcl4 mutants exhibit developmental defects and increased sensitivity to genotoxic stress. In this study, the mechanism underlying dcl4 defects was investigated using genetic, biochemical and high-throughput sequencing approaches. We show that the purple phenotype of dcl4 leaves correlates with carbohydrate over-accumulation and defective phloem transport, and depends on the activity of SUPPRESSOR OF GENE SILENCING 3, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and DCL2. This phenotype correlates with the downregulation of two genes expressed in the apex and the vasculature, SMAX1-LIKE 4 (SMXL4) and SMXL5, and the accumulation of DCL2- and RDR6-dependent small interfering RNAs derived from these two genes. Supporting a causal effect, smxl4 smxl5 double mutants exhibit leaf pigmentation, enhanced starch accumulation and defective phloem transport, similar to dcl4 plants. Overall, this study elucidates the detrimental action of DCL2 when DCL4 is absent, and indicates that DCL4 outcompeting DCL2 in wild-type plants is crucial to prevent the degradation of endogenous transcripts by DCL2- and RDR6-dependent transitive PTGS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Floema/metabolismo , Plantas Modificadas Genéticamente/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Proteínas de Ciclo Celular/genética , Mutación/genética , Floema/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética
6.
Mol Biol Cell ; 28(3): 381-386, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932495

RESUMEN

Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.


Asunto(s)
Silenciador del Gen/fisiología , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Sitios de Unión , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenómica/métodos , Heterocromatina/metabolismo , Histonas/metabolismo , Magnesio , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Telómero/metabolismo
7.
Zool Res ; 37(5): 290-6, 2016 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-27686788

RESUMEN

Triplophysa daochengensis sp. nov. is described from the Daocheng River, a northern tributary of the Jinsha River in Sichuan Province, China. The new species can be distinguished from its congeners by the following characters: body smooth and scales absent; lateral line complete; caudal peduncle compressed, depth unchanging; head length equal to caudal-peduncle length; lower jaw shovel-shaped; dorsal-fin origin anterior to pelvic-fin origin and closer to the tip of the snout than to the caudal-fin base, last unbranched ray hard; pelvic-fin tip not reaching anus; posterior chamber of gas bladder absent; intestine of spiral type with three winding coils.


Asunto(s)
Cipriniformes/anatomía & histología , Cipriniformes/clasificación , Animales , China , Especificidad de Órganos
8.
Plant Physiol Biochem ; 48(2-3): 81-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20074972

RESUMEN

Expression of OLE16 and OLE18, two oleosin isoforms in oil bodies of rice seeds, was suppressed by RNA interference. Electron microscopy revealed a few large, irregular oil clusters in 35S::ole16i transgenic seed cells, whereas accumulated oil bodies in 35S::ole18i transgenic seed cells were comparable to or slightly larger than those in wild-type seed cells. Large and irregular oil clusters were observed in cells of double mutant seeds. These unexpected differences observed in oil bodies of 35S::ole16i and 35S::ole18i transgenic seeds were further analyzed. In comparison to wild-type plants, OLE18 levels were reduced to approximately 40% when OLE16 was completely eliminated in 35S::ole16i transgenic plants. In contrast, OLE16 was reduced to only 80% of wild-type levels when OLE18 was completely eliminated in 35S::ole18i transgenic plants. While the triacylglycerol content of crude seed extracts of 35S::ole16i and 35S::ole18i transgenic seeds was reduced to approximately 60% and 80%, respectively, triacylglycerol in isolated oil bodies was respectively reduced to 45% and 80% in accordance with the reduction of their oleosin contents. Oil bodies isolated from both 35S::ole16i and 35S::ole18i transgenic seeds were found to be of comparable size and stability to those isolated from wild-type rice seeds, although they were merely sheltered by a single oleosin isoform. The drastic difference between the triacylglycerol contents of crude seed extracts and isolated oil bodies from 35S::ole16i transgenic plants could be attributed to the presence of large, unstable oil clusters that were sheltered by insufficient amounts of oleosin and therefore could not be isolated together with stable oil bodies.


Asunto(s)
Genes de Plantas , Orgánulos/metabolismo , Oryza/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/metabolismo , Triglicéridos/metabolismo , Orgánulos/genética , Oryza/genética , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Isoformas de Proteínas , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA