Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Hazard Mater ; 480: 135998, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39357362

RESUMEN

While rivers as primary conduits for land-based plastic particles transferring to their "ultimate" destination, the ocean, have garnered increasing attention, research on microplastic pollution at the scale of whole large river basins remains limited. Here we conducted a large-scale investigation of microplastic contamination in water and sediment of the world's third-largest river, the Yangtze River. We found concentrations of microplastics in water and sediment to be 5.13 items/L and 113.9 items/kg (dry weight), respectively. Moreover, microplastic pollution levels exhibited a clear decreasing trend from upstream to downstream. The detected microplastics were predominantly transparent in color, with fibrous shapes predominating, sizes mainly concentrated below 1 mm and composed primarily of PP and PE polymers. Our analysis results indicated that compared to geographical and water quality parameters, anthropogenic factors primarily determined the spatial distribution pattern of microplastics. Moreover, the microplastic abundance in sediment upstream of the dam was significantly higher than that in the downstream sediment, while the trend of microplastic concentrations in water was opposite. Therefore, more effort is needed to monitor microplastic contamination and their ecological environmental effects of sediment before dams in future research.

2.
J Anim Ecol ; 93(10): 1593-1605, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39268554

RESUMEN

Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.


Asunto(s)
Cadena Alimentaria , Lagos , Fitoplancton , Dinámica Poblacional , Zooplancton , Zooplancton/fisiología , Fitoplancton/fisiología , Animales , Biodiversidad , Cambio Climático , China , Explotaciones Pesqueras
3.
Environ Pollut ; 292(Pt A): 118331, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637833

RESUMEN

Significant differences in the morphological and physiological characteristics of submerged macrophytes have been studied following nutrient addition, but little research has investigated the changes in plant trait network topology structures and trait interactions at the whole-plant perspective along nutrient gradients. Plant trait interactions and coordination strongly determine ecosystem structure and functioning. Thirty plant traits were collected from a three-month experiment to construct plant trait networks to clarify the variations in trait connections and network organization arising from five total phosphorus (TP) addition concentrations in water, including a control (CK), 0.1 (TP1), 0.2 (TP2), 0.4 (TP3), and 0.8 (TP4) mg L-1. Nonmetric multidimensional scaling analysis showed a clear difference in the distribution of plant trait space among the different TP treatments. Distinct network structures showed that water TP-deficiency and TP-repletion changed the plant trait network into loose assemblages of more modules, which was related to low plant carbohydrate levels. Most plant functions involving biomass accumulation and carbohydrate synthesis were reduced under high TP conditions compared to moderate TP enrichment. Moreover, the percentage of significant relationships between plant functions and corresponding network modules was lower in the CK and TP4 treatments. These results suggested that low plant carbohydrates in high TP environments induced by high water chlorophyll a and tissue phosphorus could not support rapid resource transport among organs and thus inefficiently performed plant functions. Plant carbohydrates were a vital variable that impacted the network edge density, trait interactions, and plant growth. In summary, we demonstrated that high water TP enrichment reduces plant trait network connectedness and plant functional potentials, which may be correlated with reducing tissue carbohydrates. This study explores the correlations between plant trait network topology and functions to improve our understanding of physiological and ecological rules regulating trait interactions among organs and plant growth under eutrophic conditions.


Asunto(s)
Ecosistema , Fósforo , Biomasa , Clorofila A , Agua
4.
Water Res ; 202: 117392, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243052

RESUMEN

Eutrophication strongly influences plant stoichiometric characteristics and physiological status by altering nutrient and light availability in the water column. However, the mechanisms linking plant functional traits with ecosystem structure and functioning to clarify the decline of submerged macrophytes have not been fully elucidated to date. Therefore, based on a field investigation of 26 macrophytic shallow lakes on the Yangtze Plain, we first constructed a plant trait network at the whole-plant level to determine the hub traits of submerged macrophytes that play central regulatory roles in plant phenotype. Our results suggested that organ (leaf, stem, and root) phosphorus (P), starch, and total nonstructural carbohydrate (TNC) contents were hub traits. Organ starch and TNC were consistent with those in the experiment-based network obtained from a three-month manipulation experiment. Next, the mechanisms underlying the relationships between the hub traits and vital aspects of ecological performance were carefully investigated using field investigation data. Specifically, stoichiometric homeostasis of P (HP), starch, and TNC were positively associated with dominance and biomass at the species level, and community biomass at the community level. Additionally, structural equation modeling clarified not only a hypothesized pathway from eutrophication to water clarity and community TNC, but also combined effects of community TNC and HP on community biomass. That is, ecosystems dominated by more homeostatic communities tended to have more carbon (C)-rich compounds in relatively oligotrophic conditions, which promoted the primary production of macrophytes. Eutrophication was determined to affect community structure by inhibiting the predominance of more homeostatic species and the production of carbohydrates. Finally, reduced community biomass and increased nutrient contents and nutrient:C ratios in plants induced by eutrophication implied a decrease in the C sink in biomass and may potentially lead to an enhancement of litter decomposition rates and nutrient cycling rates. By adjusting plant responses to eutrophication, stoichiometric and physiological mechanisms linking plant traits with ecosystem structure have important implications for understanding ecosystem processes, and these results may contribute to practical management to achieve the restoration of submerged macrophytes and ecosystem services.


Asunto(s)
Ecosistema , Lagos , Eutrofización , Fenotipo , Fósforo
5.
Front Plant Sci ; 11: 524450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193470

RESUMEN

The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from <1 to >1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication.

6.
Sci Total Environ ; 732: 139065, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32422477

RESUMEN

Worldwide, increasing attention is being paid to the issue of microplastic pollution in marine ecosystems, yet there is a relative lack of knowledge concerning the pollution of microplastic in inland water systems, although these microplastics are major sources of ocean pollution. In aquatic environments, previous efforts have mainly been devoted to exploring the impact of human-related activities on microplastic pollution, but little is known about non-anthropogenic effects on microplastic distribution. In this paper, the relationship between rainfall and the microplastic concentration of surface water was studied for the first time. The investigation was conducted in Lake Donghu (the largest urban lake in China) from July 23 to September 1, 2019. The abundance of microplastics in the lake water ranged from 7.4 to 29.6 items/L. The dominant size of the collected microplastics was less than 2 mm, with a dominant fiber shape and a dominant transparent color. Our results demonstrated that microplastic concentration was significantly related to rainfall. Therefore, high frequency sampling and rainfall data are needed to accurately evaluate microplastic pollution as well as its consequences.

7.
Sci Total Environ ; 672: 883-892, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978550

RESUMEN

There have been numerous studies on concentrations of trace elements in aquatic ecosystems, but few have been conducted at a large spatial scale. This study collected 410 samples of five wild freshwater fishes at different trophic levels from middle and eastern China. Concentrations of eight trace elements, chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb) and cadmium (Cd) and stable isotope ratios (δ13C and δ15N) were determined in dorsal muscle of fishes. Spatially, concentrations of trace elements were least in fishes from the Hai River Basin, while those in fishes from the Taihu Lake Basin were greatest. The carnivorous topmouth culter and omnivorous common carp and crucian carp accumulated greater amounts of trace elements than did the planktivorous silver carp and bighead carp. Trophic biomagnification was for Cu, Fe and Zn, but not for Cr, Ni, As, Pb and Cd. Concentrations of As in 15 muscle samples (3.7%) from Taihu Lake Basin exceeded the guidelines (1.0 mg/kg, wet mass) provided by FAO/WHO (2014), while the total target hazard quotient (TTHQ) values were <1.0, indicating no obvious non-carcinogenic risks to humans that consume those fishes. However, people who consume larger amounts of fish products, or people who are vulnerable, such as pregnant women, children and people with poor health, might be at greater risk. Also, exposure to trace metals through other routes cannot be ignored. Accumulations of trace elements in Chinese freshwater fishes were affected by both geographical conditions and human activities.


Asunto(s)
Monitoreo del Ambiente , Peces/metabolismo , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , China , Cromo , Cyprinidae , Contaminación de Alimentos/estadística & datos numéricos , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
8.
Water Res ; 149: 302-310, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465988

RESUMEN

Catastrophic regime shifts in shallow lakes are hard to predict due to a lack of clear understanding of the associate mechanisms. Theory of alternative stable states suggests that eutrophication has profound negative effects on the structure, function and stability of freshwater ecosystems. However, it is still unclear how eutrophication destabilizes ecosystems stoichiometrically before a tipping point is reached. The stoichiometric homeostasis (H), which links fine-scale process to broad-scale patterns, is a key parameter in ecological stoichiometry. Based on investigation of 97 shallow lakes on the Yangtze Plain, China, we measured nitrogen (N) and phosphorus (P) concentrations of the aboveground tissues of common submerged macrophyte species and their corresponding sediments. We found submerged macrophytes showed significant stoichiometric homeostasis for P (HP) but not for N (HN). Furthermore, HP was positively correlated with dominance and stability at the species level, and community production and stability at the community level. Identifying where macrophyte community collapse is a fundamental way to quantify their resilience. Threshold detection showed that macrophyte community dominated by high-HP species had a higher value of tipping point (0.08 vs. 0.06 mg P L-1 in lake water), indicating their strong resilience to eutrophication. In addition, macrophytes with high HP were predominant in relative oligotrophic sediments and have higher ability in stabilizing the water environment compared to those low-HP ones. Our results suggested that ecosystem dominated by homeostatic macrophyte communities was more productive, stable and resilient to eutrophication. Eutrophication-induced stoichiometric imbalance may destabilize the ecosystem by altering the community structure from high-to low-HP species. Efforts should be focused on maintaining and restoration of high homeostatic communities to make ecosystem more resilient, which can significantly improve our understanding of the critical transition mechanisms.


Asunto(s)
Ecosistema , Eutrofización , China , Lagos , Fósforo
9.
Environ Sci Pollut Res Int ; 25(32): 32735-32746, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30244444

RESUMEN

As we know, the survival of young ramets and stolons is essential for the clonal growth of many aquatic plants. However, few NH4+ enrichment experiments on clonal growth of submerged macrophytes have been conducted to provide possible evidences for their declines in eutrophic lakes. Here, the growth and physiological responses of V. natans to the enrichment of NH4+-N were examined under six inorganic nitrogen (IN, i.e., the sum of nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N)) concentrations (control, 2.5, 4.5, 6.5, 8.5, and 10.5 mg L-1). When NH4+-N concentration increased over 0.5 mg L-1, free amino acid (FAA) contents in leaves and stolons increased while soluble carbohydrate (SC) and starch contents decreased, and major growth indices (total biomass of plants, number of ramets, and stolon dry weight (DW)) also showed a degressive tendency. Remarkably, the stolon DW significantly declined with increasing FAA, but significantly positively related to SC and starch. These results indicated that clonal growth of V. natans was inhibited by high NH4+-N concentration, and imbalance of C-N metabolism of stolons partly explained the decline of submerged clonal macrophytes. In this study, the leaves of new and small (NS) ramets contained significantly more FAA and less SC than that of mature and mother (MM) plants, indicating that the C-N metabolism of young ramets was easier to be disrupted, consequently inhibiting the clonal growth of aquatic plants. Furthermore, under the condition of high NH4+-N concentration, FAA may be a useful indicator of both macrophyte growth and physiological stress of plants.


Asunto(s)
Compuestos de Amonio/metabolismo , Hydrocharitaceae/fisiología , Desarrollo de la Planta , Biomasa , Hydrocharitaceae/metabolismo , Lagos/química , Nitrógeno/metabolismo , Agua/metabolismo
10.
Environ Sci Pollut Res Int ; 23(22): 22577-22585, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27557960

RESUMEN

Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.


Asunto(s)
Carbono/química , Sedimentos Geológicos/química , Nitrógeno/química , Fósforo/química , Plantas/química , Biomasa , China , Lagos , Plantas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA