Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hepatology ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178365

RESUMEN

BACKGROUND AND AIMS: Biliary atresia (BA) is a devastating fibroinflammatory biliary disease that is the leading indication for pediatric liver transplants worldwide. Although cholangiocytes are the primary target cells, the pathogenic mechanisms involving cholangiocytes remain elusive. Here, we aimed to characterize the pathogenic role of cholangiocytes in BA. APPROACH AND RESULTS: Integration of single-cell RNA sequencing of 12 liver tissues (from 9 BA and 3 controls) and the spatial transcriptome of another four liver sections (from 2 BA and 2 controls) provided a comprehensive spatial liver cell atlas of BA. In particular, we identified a cholangiocyte-enriched spatial niche with infiltration of activated HSCs, activated portal fibroblasts, macrovascular endothelial cells, and TREM2 + macrophages that were elevated in the portal triad of BA. This niche was positively correlated with bile duct profiles, liver fibrosis, and poor survival in 2 independent cohorts of patients with BA. Using integrative bioinformatics analyses to mine the cell-cell communication and regulatory network in BA cholangiocytes, we uncovered the fibroinflammatory phenotype of cholangiocytes with TNFSF12-TNFRSF12A as a significant signal. Genetic ablation or blockade of TNFRSF12A suppresses liver injury, inflammation, and bile duct profiles in a mouse model of disease. Using human biliary organoids, we revealed that BA organoids expressed higher levels of CCL2 in response to TNFSF12 stimulation and promoted monocyte chemotaxis via the CCL2-CCR2 axis. CONCLUSIONS: Pathogenic cholangiocytes-enriched niche identifies TNFRSF12A as a potential therapeutic target for BA.

2.
EBioMedicine ; 103: 105138, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678809

RESUMEN

BACKGROUND: Biliary atresia (BA) is a neonatal fibro-inflammatory cholangiopathy with ductular reaction as a key pathogenic feature predicting poor survival. Mucosal-associated invariant T (MAIT) cells are enriched in human liver and display multiple roles in liver diseases. We aimed to investigate the function of MAIT cells in BA. METHODS: First, we analyzed correlations between liver MAIT cell and clinical parameters (survival, alanine transaminase, bilirubin, histological inflammation and fibrosis) in two public cohorts of patients with BA (US and China). Kaplan-Meier survival analysis and spearman correlation analysis were employed for survival data and other clinical parameters, respectively. Next, we obtained liver samples or peripheral blood from BA and control patients for bulk RNA sequencing, flow cytometry analysis, immunostaning and functional experiments of MAIT cells. Finally, we established two in vitro co-culture systems, one is the rhesus rotavirus (RRV) infected co-culture system to model immune dysfunction of human BA which was validated by single cell RNA sequencing and the other is a multicellular system composed of biliary organoids, LX-2 and MAIT cells to evaluate the role of MAIT cells on ductular reaction. FINDINGS: Liver MAIT cells in BA were positively associated with low survival and ductular reaction. Moreover, liver MAIT cells were activated, exhibited a wound healing signature and highly expressed growth factor Amphiregulin (AREG) in a T cell receptor (TCR)-dependent manner. Antagonism of AREG abrogated the proliferative effect of BA MAIT cells on both cholangiocytes and biliary organoids. A RRV infected co-culture system, recapitulated immune dysfunction of human BA, disclosed that RRV-primed MAIT cells promoted cholangiocyte proliferation via AREG, and further induced inflammation and fibrosis in the multicellular system. INTERPRETATION: MAIT cells exhibit a wound healing signature depending on TCR signaling and promote ductular reaction via AREG, which is associated with advanced fibrosis and predictive of low survival in BA. FUNDING: This work was funded by National Natural Science Foundation of China grant (82001589 and 92168108), National Key R&D Program of China (2023YFA1801600) and by Basic and Applied Basic Research Foundation of Guangdong (2020A1515110921).


Asunto(s)
Anfirregulina , Atresia Biliar , Células T Invariantes Asociadas a Mucosa , Femenino , Humanos , Masculino , Anfirregulina/metabolismo , Anfirregulina/genética , Conductos Biliares/metabolismo , Conductos Biliares/patología , Atresia Biliar/patología , Atresia Biliar/metabolismo , Atresia Biliar/inmunología , Biomarcadores , Técnicas de Cocultivo , Hígado/metabolismo , Hígado/patología , Hígado/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo
3.
Front Pediatr ; 10: 1050326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440333

RESUMEN

Biliary atresia (BA) is a devastating cholangiopathy in neonate. Transcription factors (TFs), a type of master regulators in biological processes and diseases, have been implicated in pathogenesis of BA. However, a global view of TFs and how they link to clinical presentations remain explored. Here, we perform a joint transcriptional regulatory network and protein activity inference analysis in order to investigate transcription factor activity in BA. By integration of three independent human BA liver transcriptome datasets, we identify 22 common master regulators, with 14 activated- and 8 repressed TFs. Gene targets of activated TFs are enriched in biological processes of SMAD, NF-kappaB and TGF-beta, while those of repressed TFs are related to lipid metabolism. Mining the clinical association of TFs, we identify inflammation-, fibrosis- and survival associated TFs. In particular, ZNF14 is predictive of poor survival and advanced live fibrosis. Supporting this observation, ZNF14 is positively correlated with T helper cells, cholangiocytes and hepatic stellate cells. In sum, our analysis reveals key clinically associated master regulators for BA.

4.
Mol Ther ; 30(2): 714-725, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478872

RESUMEN

We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was downregulated significantly in human hepatocellular carcinoma (HCC) tissues and its decrease was associated with increased metastasis potential and HCC recurrence. Gain- and loss-of-function investigations disclosed that in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. Mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. The NAD+/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. Treatment with the NAD+ precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. miR-17-5p upregulation was associated with MPM downregulation in HCC tissues. These findings indicate that a decrease in MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and the NAD+/NADH ratio.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Metástasis de la Neoplasia
5.
Hepatology ; 71(5): 1660-1677, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31509261

RESUMEN

BACKGROUND AND AIMS: DNA damage-induced NF-κB activation is a major obstacle to effective antitumour chemotherapy. Long noncoding RNAs (lncRNAs) that regulate chemoresistance of cancer cells remain largely unknown. This study aimed to characterize the lncRNAs that may affect chemotherapy sensitivity. APPROACH AND RESULTS: We found that lncRNA PDIA3P1 (protein disulfide isomerase family A member 3 pseudogene 1) was up-regulated in multiple cancer types and following treatment with DNA-damaging chemotherapeutic agents, like doxorubicin (Dox). Higher PDIA3P1 level was associated with poorer recurrence-free survival of human hepatocellular carcinoma (HCC). Both gain-of-function and loss-of-function studies revealed that PDIA3P1 protected cancer cells from Dox-induced apoptosis and allowed tumor xenografts to grow faster and to be more resistant to Dox treatment. Mechanistically, miR-125a/b and miR-124 suppressed the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), but PDIA3P1 bound to miR-125a/b/miR-124 and relieved their repression on TRAF6, leading to activation of the nuclear factor kappa B (NF-κB) pathway. Consistently, the effect of PDIA3P1 inhibition in promoting Dox-triggered apoptosis was antagonized by silencing the inhibitor of κBα (IκBα) or overexpressing TRAF6. Administration of BAY 11-7085, an NF-κB inhibitor attenuated PDIA3P1-induced resistance to Dox treatment in mouse xenografts. Moreover, up-regulation of PDIA3P1 was significantly correlated with elevation of TRAF6, phosphorylated p65, or NF-κB downstream anti-apoptosis genes in human HCC tissues. These data indicate that enhanced PDIA3P1 expression may confer chemoresistance by acting as a microRNA sponge to increase TRAF6 expression and augment NF-κB signaling. Subsequent investigations into the mechanisms of PDIA3P1 up-regulation revealed that human homologue of mRNA transport mutant 4 (hMTR4), which promotes RNA degradation, could bind to PDIA3P1, and this interaction was disrupted by Dox treatment. Overexpression of hMTR4 attenuated Dox-induced elevation of PDIA3P1, whereas silencing hMTR4 increased PDIA3P1 level, suggesting that Dox may up-regulate PDIA3P1 by abrogating the hMTR4-mediated PDIA3P1 degradation. CONCLUSION: There exists a hMTR4-PDIA3P1-miR-125/124-TRAF6 regulatory axis that regulates NF-κB signaling and chemoresistance, which may be exploited for anticancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Daño del ADN/genética , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , FN-kappa B/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/antagonistas & inhibidores , Nitrilos/farmacología , Proteína Disulfuro Isomerasas/genética , Seudogenes , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Sulfonas/farmacología , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cell Death Dis ; 10(7): 528, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296841

RESUMEN

Micropeptides belong to a class of newly identified small molecules with <100 amino acids in length, and their functions remain largely unknown. Here, we identified a novel muscle-enriched micropeptide that was localized to mitochondria (named MPM, micropeptide in mitochondria) and upregulated during in vitro differentiation of C2C12 myoblasts and in vivo early postnatal skeletal muscle development, and muscle regeneration after cardiotoxin (CTX) damage. Downregulation of MPM was observed in the muscular tissues of tibial muscular dystrophy and Duchenne muscular dystrophy patients. Furthermore, MPM silencing inhibited the differentiation of C2C12 myoblasts into myotubes, whereas MPM overexpression stimulated it. MPM-/- mice exhibited smaller skeletal muscle fibers and worse muscle performance, such as decrease in the maximum grip force of limbs, the latency to fall off rotarod, and the exhausting swimming time. Muscle regeneration was also impaired in MPM-/- mice, as evidenced by lower expression of Pax7, MyoD, and MyoG after CTX injection and smaller regenerated myofibers, compared with wild-type mice. Mechanistical investigations based on both gain- and loss-of function studies revealed that MPM increased oxygen consumption and ATP production of mitochondria. Moreover, ectopic expression of PGC-1α, which can enhance mitochondrial respiration, attenuated the inhibitory effect of siMPM on myogenic differentiation. These results imply that MPM may promote myogenic differentiation and muscle fiber growth by enhancing mitochondrial respiratory activity, which highlights the importance of micropeptides in the elaborate regulatory network of both myogenesis and mitochondrial activity and implicates MPM as a potential target for muscular dystrophy therapy.


Asunto(s)
Mitocondrias/metabolismo , Desarrollo de Músculos , Mioblastos Esqueléticos/metabolismo , Péptidos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Proteína MioD/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Miogenina/metabolismo , Factor de Transcripción PAX7/metabolismo , Péptidos/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regeneración/genética , Regeneración/fisiología
7.
Biochim Biophys Acta ; 1859(7): 933-42, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27179445

RESUMEN

MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcription start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells.


Asunto(s)
Carcinoma Hepatocelular/genética , Histona Desacetilasas/fisiología , Neoplasias Hepáticas/genética , MicroARNs/genética , Factor de Transcripción Sp1/fisiología , Carcinoma Hepatocelular/metabolismo , Regulación hacia Abajo/genética , Epigénesis Genética/fisiología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Activación Transcripcional , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA