Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.365
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38985335

RESUMEN

We assess the associations between personality traits and co-occurrence of depressive symptoms and high BMI from adolescence to early adulthood. We employed a nationally representative cohort in China from 2010 to 2020 year. We included adolescents aged 10-19 years without depressive symptoms and unhealthy weight status (obesity, overweight, or thinness) at baseline and excluded those without any measurement of depressive symptoms or BMI at follow-ups. We assessed baseline personality traits in 7 dimensions of conscientiousness, openness, neuroticism, agreeableness, extraversion, self-esteem, and responsibility. We also assessed the combined effects of these 7 dimensions of personality traits by generating individual-level personality trait risk scores based on the weighted sum of all these 7 dimensions of personality traits. We measured the co-occurrence of depressive symptoms and high BMI using both a single measurement of depressive symptoms and BMI at the last follow-up and repeated measurements of them over 10 years. We used the multinomial logistic regression models to examine the exposure-outcome associations. At baseline, we included 1778 individuals (mean age: 14.4 year; female: 853 (48.0%)). At follow-ups, we observed increased risk of co-occurrence of depressive symptoms and high BMI per 1-SD increase in neuroticism score (1.95-2.38 odds ratio) or 1-SD decrease in self-esteem and conscientiousness (0.63-0.80 odds ratio; all P values < 0.05); we observed no evidence of associations between openness, agreeableness, extraversion, or responsibility and the risk of co-occurrence of depressive symptoms and high BMI (all P values > 0.05). For the combined effects of the 7 dimensions of personality traits, we found an elevated risk of co-occurrence of depressive symptoms and high BMI per 1-SD increase in the personality trait risk scores (OR (95% CI), single measurement at the last follow-up: 2.01, 1.66 to 2.43; trajectory classification using the repeated measurements 2.30, 1.55 to 3.42; average level using the repeated measurements: 2.27, 1.93 to 2.67). In this national cohort in China, personality traits were found to be associated with the co-occurrence of depressive symptoms and high BMI from adolescence to early adulthood. These findings highlight the importance of stratifying individuals based on their personality traits and providing targeted interventions for those at risk of comorbid depression and obesity.

2.
Chaos ; 34(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38980382

RESUMEN

Complex ecosystems often exhibit a tipping point around which a small perturbation can lead to the loss of the basic functionality of ecosystems. It is challenging to develop a control strategy to bring ecosystems to the desired stable states. Typically, two methods are employed to restore the functionality of ecosystems: abundance control and ecological regulation. Abundance control involves directly managing species abundance through methods such as trapping, shooting, or poisoning. On the other hand, ecological regulation is a strategy for ecosystems to self-regulate through environment improvement. To enhance the effectiveness of ecosystem recovery, we propose adaptive regulation by combining the two control strategies from mathematical and network science perspectives. Criteria for controlling ecosystems to reach equilibrium with or without noise perturbation are established. The time and energy costs of restoring an ecosystem to equilibrium often determine the choice of control strategy, thus, we estimate the control costs. Furthermore, we observe that the regulation parameter in adaptive regulation affects both time and energy costs, with a trade-off existing between them. By optimizing the regulation parameter based on a performance index with fixed weights for time and energy costs, we can minimize the total cost. Moreover, we discuss the impact of the complexity of ecological networks on control costs, where the more complex the networks, the higher the costs. We provide corresponding theoretical analyses for random networks, predator-prey networks, and mixture networks.

3.
Nat Commun ; 15(1): 5896, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003311

RESUMEN

Outstanding overall mechanical properties are essential for the successful utilization of hydrogels in advanced applications such as human-machine interfaces and soft robotics. However, conventional hydrogels suffer from fracture toughness-stiffness conflict and fatigue threshold-stiffness conflict, limiting their applicability. Simultaneously enhancing the fracture toughness, fatigue threshold, and stiffness of hydrogels, especially within a homogeneous single network structure, has proven to be a formidable challenge. In this work, we overcome this challenge through the design of a loosely cross-linked hydrogel with slight dehydration. Experimental results reveal that the slightly-dehydrated, loosely cross-linked polyacrylamide hydrogel, with an original/current water content of 87%/70%, exhibits improved mechanical properties, which is primarily attributed to the synergy between the long-chain structure and the dense dehydration-induced entanglements. Importantly, the creation of these microstructures does not require intricate design or processing. This simple approach holds significant potential for hydrogel applications where excellent anti-fracture and fatigue-resistant properties are necessary.

4.
Genes Dis ; 11(5): 101040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38993791

RESUMEN

Fibroblast activation and extracellular matrix (ECM) deposition play an important role in the tracheal abnormal repair process and fibrosis. As a transcription factor, SOX9 is involved in fibroblast activation and ECM deposition. However, the mechanism of how SOX9 regulates fibrosis after tracheal injury remains unclear. We investigated the role of SOX9 in TGF-ß1-induced fibroblast activation and ECM deposition in rat tracheal fibroblast (RTF) cells. SOX9 overexpression adenovirus (Ad-SOX9) and siRNA were transfected into RTF cells. We found that SOX9 expression was up-regulated in RTF cells treated with TGF-ß1. SOX9 overexpression activated fibroblasts and promoted ECM deposition. Silencing SOX9 inhibited cell proliferation, migration, and ECM deposition, induced G2 arrest, and increased apoptosis in RTF cells. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) assays identified MMP10, a matrix metalloproteinase involved in ECM deposition, as a direct target of SOX9, which promotes ECM degradation by increasing MMP10 expression through the Wnt/ß-catenin signaling pathway. Furthermore, in vivo, SOX9 knockdown ameliorated granulation proliferation and tracheal fibrosis, as manifested by reduced tracheal stenosis. In conclusion, our findings indicate that SOX9 can drive fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/ß-catenin signaling pathway. The SOX9-MMP10-ECM biosynthesis axis plays an important role in tracheal injury and repair. Targeting SOX9 and its downstream target MMP10 may represent a promising therapeutic approach for tracheal fibrosis.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39004209

RESUMEN

OBJECTIVE: In the knee, synovial fibrosis after ligamentous injury is linked to progressive joint pain and stiffness. The objective of this study was to evaluate changes in synovial architecture, mechanical properties, and transcriptional profiles following naturally occurring cruciate ligament injury in canines and to test potential therapeutics that target drivers of synovial inflammation and fibrosis. DESIGN: Synovia from canines with spontaneous cruciate ligament tears and from healthy knees were assessed via histology (n=10/group) and micromechanical testing (n=5/group) to identify changes in tissue architecture and stiffness. Additional samples (n=5/group) were subjected to RNA-sequencing to define the transcriptional response to injury. Finally, synovial tissue samples from injured animals (n=6 (IL1) or n=8 (IL6)/group) were assessed in vitro for response to therapeutic molecules directed against interleukin (IL) signaling (IL1 or IL6). RESULTS: Cruciate injury resulted in increased synovial fibrosis, vascularity, inflammatory cell infiltration, and intimal hyperplasia. Additionally, the stiffness of both the intima and subintima regions were higher in diseased compared to healthy tissue. Differential gene expression analysis showed that diseased synovium had an upregulation of immune response and cell adhesion pathways and a downregulation of Rho protein transduction pathways. In vitro application of small molecule therapeutics targeting IL1 (anakinra) or IL6 (tocilizumab) dampened expression of inflammatory and matrix deposition mediators. CONCLUSION: Spontaneous cruciate ligament injury in canines is associated with synovial inflammation and fibrosis in a relevant model for testing emerging intra-articular treatments. Small molecule therapeutics targeting IL pathways may be ideal interventions for delivery to the joint space after injury.

6.
Front Neurosci ; 18: 1385960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841094

RESUMEN

Introduction: Cerebral small vessel disease (SVD) affects older adults, but traditional approaches have limited the understanding of the neural mechanisms of SVD. This study aimed to explore the effects of SVD on brain regions and its association with cognitive decline using the four-dimensional (spatiotemporal) consistency of local neural activity (FOCA) method. Methods: Magnetic resonance imaging data from 42 patients with SVD and 38 healthy controls (HCs) were analyzed using the FOCA values. A two-sample t test was performed to compare the differences in FOCA values in the brain between the HCs and SVD groups. Pearson correlation analysis was conducted to analyze the association of various brain regions with SVD scores. Results: The results revealed that the FOCA values in the right frontal_inf_oper, right temporal_pole_sup, and default mode network decreased, whereas those in the temporal_inf, hippocampus, basal ganglia, and cerebellum increased, in patients with SVD. Most of these varying brain regions were negatively correlated with SVD scores. Discussion: This study suggested that the FOCA approach might have the potential to provide useful insights into the understanding of the neurophysiologic mechanisms of patients with SVD.

7.
Opt Express ; 32(11): 19935-19949, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859115

RESUMEN

Hypersonic target detection based on infrared intensity characteristics is easily disturbed by sea surface and cloud flares when detected by space-based optical systems, which results in a low detection rate, high false alarm, and difficulty in stable detection. This paper explores a method to improve target detection performance based on the correlation of infrared radiation, multi-spectral and polarization. Firstly, the comprehensive factors that influence complex ambient illumination, atmospheric transmission, and clutter background on spectral-polarization characteristics of hypersonic targets are analyzed. Based on the global radiation scattering theory, the temperature distribution model of the hypersonic target is established by using FLUENT. The polarization emission and pBRDF model of the target is established, and the radiation polarization transfer model is generated. Secondly, the sea surface temperature distribution is obtained by inversion of Landsat8 remote sensing data. The radiation polarization transfer model of the sea surface is established based on the Cox-Munk model combined with pBRDF and the polarization emission model. Thirdly, the polarization scattering effect of atmospheric particles on the upward radiation of the interaction of the target with the sunlight is considered comprehensively, and the 6SV radiative transfer model is used to calculate the polarization effect of atmospheric particles on the upward radiation transmission of the target and the background. Then, combined with the point diffusion of the optical system and the photoelectric conversion of the detector, the multi-dimensional full-chain imaging prediction model of the hypersonic target-sea background-ambient atmosphere-optical system-detector is established. The imaging characteristics and detection performance of the target in different imaging dimensions are simulated and analyzed with the signal-to-clutter ratio (SCR). The research shows that in the direction of reflected sunlight from the sea surface, the sea surface glare is suppressed and the target is highlighted through a target detection method of multi-dimensional information. This method has better detection results than the infrared multi-spectral detection method.

8.
Fitoterapia ; 177: 106077, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906387

RESUMEN

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).

9.
Gene ; 927: 148633, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838871

RESUMEN

Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.

10.
Biosens Bioelectron ; 261: 116505, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885536

RESUMEN

Surface enhanced Raman spectroscopy (SERS) utilizes the fingerprint features of molecular vibrations to identify and detect substances. However, in traditional single focus excitation scenarios, its signal collection efficiency of the objective is restricted. Furthermore, the uneven distribution of samples on the SERS substrate would result in poor signal stability, while the excitation power is limited to avoid sample damage. SERS detection system always requires precise adjustment of focal length and spot size, making it difficult for point-of-care testing applications. Here, we proposed a SERS microfluidic chip with barium titanate microspheres array (BTMA) embedded using vacuum self-assembled hot-pressing method for SERS detection with simultaneous enhancement of sensitivity and stability. Due to photonic nano-jets and directional antenna effects, high index microspheres are perfect micro-lens for effective light focusing and signal collecting. The BTMA can not only disperse excitation beam into an array of focal points covering the target uniformly with very low signal fluctuation, but enlarge the power threshold for higher signal intensity. We conducted a proof-of-principle experiment on chip for the detection of bacteria with immuno-magnetic tags and immuno-SERS tags. Together with magnetic and ultrasonic operations, the target bacteria in the flow were evenly congregated on the focal plane of BTMA. It demonstrated a limit of detection of 5 cells/mL, excellent signal reproducibility (error∼4.84%), and excellent position tolerance of 500 µm in X-Y plane (error∼5.375%). It can be seen that BTMA-SERS microfluidic chip can effectively solve the contradiction between sensitivity and stability in SERS detection.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Microesferas , Espectrometría Raman , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Diseño de Equipo , Titanio/química , Lentes , Escherichia coli/aislamiento & purificación
11.
Artículo en Inglés | MEDLINE | ID: mdl-38823432

RESUMEN

OBJECTIVE: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS: There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS: To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.

12.
Eur J Radiol ; 177: 111577, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38905802

RESUMEN

PURPOSE: This scoping review aimed to understand the advances in radiomics in esophagogastric junction (EGJ) cancer and assess the current status of radiomics in EGJ cancer. METHODS: We conducted systematic searches of PubMed, Embase, and Web of Science databases from January 18, 2012, to January 15, 2023, to identify radiomics articles related to EGJ cancer. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies using the Radiomics Quality Score (RQS) and the METhodological RadiomICs Score (METRICS) tool, respectively. RESULTS: A total of 120 articles were retrieved from the three databases, and after screening, only six papers met the inclusion criteria. These studies investigated the role of radiomics in differentiating adenocarcinoma from squamous carcinoma, diagnosing T-stage, evaluating HER2 overexpression, predicting response to neoadjuvant therapy, and prognosis in EGJ cancer. The median score percentage of RQS was 34.7% (range from 22.2% to 38.9%). The median score percentage of METRICS was 71.2% (range from 58.2% to 84.9%). CONCLUSION: Although there is a considerable difference between the RQS and METRICS scores of the included literature, we believe that the research value of radiomics in EGJ cancer has been revealed. In the future, while actively exploring more diagnostic, prognostic, and biological correlation studies in EGJ cancer, greater emphasis should be placed on the standardization and clinical application of radiomics.

13.
Anal Methods ; 16(21): 3392-3412, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38752456

RESUMEN

Cocculus orbiculatus (L.) DC. (C. orbiculatus) is a medicinal herb valued for its dried roots with anti-inflammatory, analgesic, diuretic, and other therapeutic properties. Despite its traditional applications, chemical investigations into C. orbiculatus remain limited, focusing predominantly on alkaloids and flavonoids. Furthermore, the therapeutic use of C. orbiculatus predominantly focuses on the roots, leaving the stems, a significant portion of the plant, underutilized. This study employed ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) with in-house and online databases for comprehensive identification of components in various plant parts. Subsequently, untargeted metabolomics was employed to analyze differences in components across different harvest periods and plant sections of C. orbiculatus, aiming to screen for distinct components in different parts of the plant. Finally, metabolomic analysis of the roots and stems, which contribute significantly to the plant's weight, was conducted using chemometrics, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and heatmaps. A total of 113 components, including alkaloids, flavonoids, and organic acids, were annotated across the root, stem, leaf, flower, and fruit, along with numerous previously unreported compounds. Metabolomic analyses revealed substantial differences in components between the root and stem compared to the leaf, flower, and fruit during the same harvest period. PLS-DA and OPLS-DA annotated 10 differentiating components (VIP > 1.5, P < 0.05, FC > 2 or FC < 0.67), with 5 unique to the root and stem, exhibiting lower mass spectrometric responses. This study provided the first characterization of 113 chemical constituents in different parts of C. orbiculatus, laying the groundwork for pharmacological research and advocating for the enhanced utilization of its stem.


Asunto(s)
Metabolómica , Raíces de Plantas , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Raíces de Plantas/química , Flavonoides/análisis , Alcaloides/análisis , Alcaloides/química , Tallos de la Planta/química , Extractos Vegetales/química , Análisis de Componente Principal
14.
Sci Adv ; 10(20): eadl4387, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748786

RESUMEN

4D printing enables 3D printed structures to change shape over "time" in response to environmental stimulus. Because of relatively high modulus, shape memory polymers (SMPs) have been widely used for 4D printing. However, most SMPs for 4D printing are thermosets, which only have one permanent shape. Despite the efforts that implement covalent adaptable networks (CANs) into SMPs to achieve shape reconfigurability, weak thermomechanical properties of the current CAN-SMPs exclude them from practical applications. Here, we report reconfigurable 4D printing via mechanically robust CAN-SMPs (MRC-SMPs), which have high deformability at both programming and reconfiguration temperatures (>1400%), high Tg (75°C), and high room temperature modulus (1.06 GPa). The high printability for DLP high-resolution 3D printing allows MRC-SMPs to create highly complex SMP 3D structures that can be reconfigured multiple times under large deformation. The demonstrations show that the reconfigurable 4D printing allows one printed SMP structure to fulfill multiple tasks.

15.
Transl Neurosci ; 15(1): 20220340, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708097

RESUMEN

Objectives: The FT4-to-FT3 ratio (FFR) variations in patients with subacute combined spinal cord degeneration (SCSD) as a potentially useful prognostic indicator are still unknown. This study aimed to investigate the changes of FFR as a potentially valuable prognostic predictor in patients with SCSD. Methods: This study included 144 consecutive SCSD patients who received standard diagnostic and therapeutic procedures between January 2015 and December 2021 and were admitted to the Department of Neurology at the First Affiliated Hospital of Bengbu Medical University. At the time of admission, we gathered data on all patients' demographics, daily routines, previous chronic conditions, medication histories, and other clinical details. For the purpose of measuring FFR, blood samples were specifically taken within 48 h of admission. The degree of neurological impairment of patients was assessed using the functional disability scale at the time of admission. At 6 months following discharge, the Modified Rankin Scale (mRS) was used to evaluate the clinical prognosis. To evaluate the relationship between the FFR and the risks of a poor outcome (mRS > 2), univariate and multivariate logistic regression analysis was utilized. The significance of the FT4/FT3 ratio in predicting the clinical outcomes in SCSD patients 6 months after discharge was assessed using the area under curve-receiver operating characteristic (AUC-ROC). Results: About 90 patients (62.5%) of the 144 patients had poor outcomes, while 54 (37.5%) had favorable outcomes. Higher FFR at admission was independently linked to higher odds of a poor outcome, according to a logistic analysis. With an optimized cutoff value of >2.843, the FFR exhibited the maximum accuracy for predicting a poor outcome, according to the AUC‒ROC curve (AUC 0.731, P < 0.001; sensitivity, 77.8%; specificity, 83.3%). FFR was identified as an independent predictor of poor outcomes by multivariate logistic regression (OR, 2.244; 95% CI, 1.74-2.90; P < 0.001). Conclusions: We discovered that in patients who had a bad result 6 months after discharge, the FFR had dramatically increased at the time of admission, providing a unique prognostic marker in patients with SCSD.

16.
Curr Trop Med Rep ; 11(2): 92-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813571

RESUMEN

Purpose of Review: Here we highlight the significant contribution that genomics-based approaches have had on the field of Cryptosporidium research and the insights these approaches have generated into Cryptosporidium biology and transmission. Recent Findings: There are advances in genomics, genetic manipulation, gene expression, and single-cell technologies. New and better genome sequences have revealed variable sub-telomeric gene families and genes under selection. RNA expression data now include single-cell and post-infection time points. These data have provided insights into the Cryptosporidium life cycle and host-pathogen interactions. Antisense and ncRNA transcripts are abundant. The critical role of the dsRNA virus is becoming apparent. Summary: The community's ability to identify genomic targets in the abundant, yet still lacking, collection of genomic data, combined with their increased ability to assess function via gene knock-out, is revolutionizing the field. Advances in the detection of virulence genes, surveillance, population genomics, recombination studies, and epigenetics are upon us.

17.
Ann Vasc Surg ; 106: 162-167, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821477

RESUMEN

BACKGROUND: To evaluate the safety and effectiveness of a stepwise interventional strategy for the removal of adherent totally implanted central venous access port catheters, consisting of a guidewire support, antegrade coaxial separation, and retrograde coaxial separation with increasing technical complexity. METHODS: This study has a retrospective design. Thirty-two patients who had failed routine removal of the port catheter and were then transferred to interventional radiology between November 2017 and December 2023 were reviewed. The technical success and complication rates were recorded. RESULTS: All adherent catheters were successfully removed without catheter fragmentation, using guidewire support (n = 21), antegrade coaxial separation (n = 5), and retrograde coaxial separation (n = 6). The technical success rate was 100%, and no complications occurred. CONCLUSIONS: The proposed stepwise interventional strategy successfully removed adherent port catheters, with good safety and high effectiveness. It appeared to reduce the incidence of catheter fracture during the removal of adherent totally implantable central venous access port catheters.

18.
Redox Biol ; 73: 103176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705094

RESUMEN

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.


Asunto(s)
Ferroptosis , NADP , Humanos , NADP/metabolismo , Animales , Aciltransferasas/metabolismo , Aciltransferasas/genética , Ratones , Procesamiento Proteico-Postraduccional
20.
Soft Matter ; 20(27): 5314-5323, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712600

RESUMEN

Magnetic hydrogel actuators exhibit promising applications in the fields of soft robotics, bioactuators, and flexible sensors owing to their inherent advantages such as remote control capability, untethered deformation and motion control, as well as easily manipulable behavior. However, it is still a challenge for magnetic hydrogels to achieve adjustable stiffness and shape fixation under magnetic field actuation deformation. Herein, a simple and effective approach is proposed for the design of magnetic shape memory hydrogels to accomplish this objective. The magnetic shape memory hydrogels, consisting of methacrylamide, methacrylic acid, polyvinyl alcohol and Fe3O4 magnetic particles, which crosslinked by hydrogen bonds, are facilely prepared via one-pot polymerization. The dynamic nature of noncovalent bonds offers the magnetic hydrogels with excellent mechanical properties, precisely controlled stiffness, and effective shape fixation. The presence of Fe3O4 particles renders the hydrogels soft when subjected to an alternating current field, facilitating their deformation under the influence of an actuation magnetic field. After the elimination of the alternating current magnetic field, the hydrogels stiffen and attain a fixed actuated shape in the absence of any external magnetic field. Moreover, this remarkable magnetic shape memory hydrogel is effectively employed as an underwater soft gripper for lifting heavy objects. This work provides a novel strategy for fabricating magnetic hydrogels with non-contact reversible actuation deformation, tunable stiffness and shape locking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA