RESUMEN
Surface-active bonding (SAB) is a promising technique for semiconductors directly bonding. However, the interlayer of the bonding interface and the reduced layer thickness may affect thermal transport. In this study, the temperature-dependent cross-plane thermal conductivity of 4H-SiC thin films and the effective thermal boundary resistance (TBReff) of the bonding SiC-on-SiC are measured by the multiple-probe wavelength nanosecond transient thermoreflectance (MW-TTR). The measured temperature-dependent cross-plane thermal conductivity of the 4H-SiC thin film exhibits good quantitative agreement with calculation by density functional theory (DFT) including higher-order four-phonon (4ph) scattering, especially at high temperatures (>400 K). The theoretical calculations indicate the non-negligible importance of 4ph scattering in 4H-SiC high-temperature applications, due to the significantly increasing 4ph scattering rate at increasing temperature and strong temperature dependence of 4ph scattering. The measured nonzero but small TBReff (2.33 + 0.43/-1.15 m2 K/GW) at the SiC-SiC interface is analyzed with molecular dynamics (MD) simulation, indicating that a strong bonding interface with an extremely thin interlayer is formed by the SAB process. Two-dimensional finite element simulations of the experimental equivalent structures are further investigated, and the significant effects (at least 19 °C) of TBReff on the maximum temperature (Tmax) are confirmed. This study provides insight into the fundamental phonon transport and interface thermal transport mechanism in SAB SiC-on-SiC and paves the way for improved 4H-SiC efficient device manufacturing and thermal management.
RESUMEN
Different phases of Ga2O3 have been regarded as superior platforms for making new-generation high-performance electronic devices. However, understanding of thermal transport in different phases of nanoscale Ga2O3 thin-films remains challenging, owing to the lack of phonon transport models and systematic experimental investigations. Here, thermal conductivity (TC) and thermal boundary conductance (TBC) of the ( 1 ¯ 010 ) $( {\bar 1010} )$ α-, ( 2 ¯ 01 ) $( {\bar 201} )\;$ ß-, and (001) κ-Ga2O3 thin films on sapphire are investigated. At ≈80 nm, the measured TC of α (8.8 W m-1 K-1) is ≈1.8 times and ≈3.0 times larger than that of ß and κ, respectively, consistent with model based on density functional theory (DFT), whereas the model reveals a similar TC for the bulk α- and ß-Ga2O3. The observed phase- and size-dependence of TC is discussed thoroughly with phonon transport properties such as phonon mean free path and group velocity. The measured TBC at Ga2O3/sapphire interface is analyzed with diffuse mismatch model using DFT-derived full phonon dispersion relation. Phonon spectral distribution of density of states, transmission coefficients, and group velocity are studied to understand the phase-dependence of TBC. This study provides insight into the fundamental phonon transport mechanism in Ga2O3 thin films and paves the way for improved thermal management of high-power Ga2O3-based devices.
RESUMEN
Unhealthy diets rich in fats and/or sugar are considered as the major external cause of the obesity epidemic, which is often accompanied by a significant decrease in gut hormone glucagon-like peptide-1 (GLP1) levels. Numerous studies have demonstrated notable contributions of the gut microbiota in this process. Nevertheless, the underlying mechanism still needs further investigation. The role of epigenetic modifications in gene expression and metabolism has been well demonstrated, with m6A methylation on RNAs being the most prevalent modification throughout their metabolism. In the present study, we found that the expressions of small intestinal Gcg and Pc3, two key genes regulating GLP1 expression, were significantly downregulated in obese mice, associated with reduced GLP1 level. Immunohistochemistry analysis indicated that a high-fat diet slightly increased the density of enteroendocrine L cells in the small intestine, implying that decreased GLP1 levels were not caused by the changes in L cell intensity. Instead, the small intestinal m6A level as well as the expression of known "writers", mettl3/14 and wtap, were found to be positively correlated with the expression of Gcg and Pc3. Fecal microbiota transplantation with feces from normal and obese mice daily to antibiotic-treated mice revealed that dysbiosis in diet-induced obesity was sufficient to reduce serum GLP1, small intestinal m6A level, and intestinal expressions of Gcg, Pc3, and writer genes (mettl3/14, wtap). However, as the most direct and universal methyl donor, the production of fecal S-adenosylmethionine was neither affected by the different dietary patterns nor their shaped microbiota. These results suggested that microbial modulation of the epitranscriptome may be involved in regulating GLP1 expression, and highlighted epitranscriptomic modifications as an additional level of interaction between diet and individual health.
Asunto(s)
Dieta Alta en Grasa , Hormonas Gastrointestinales , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Péptido 1 Similar al Glucagón , Ratones Obesos , Intestino DelgadoRESUMEN
Hybrid bismuth halides perovskites have emerged as promising candidates for X-ray detection, due to the strong absorptivity of high-energy X-ray photons, high resistivity, large carrier diffusion length and low toxicity. However, the mostly investigated hybrid bismuth iodides single crystals are usually opaque and require a harsh synthesis process. Herein, novel one-dimensional (1D) pentamethylenediamine bismuth bromide (PDA)BiBr5 single crystals were synthesized via an antisolvent-assisted crystallization method at room temperature. Bulk (PDA)BiBr5 single crystals have sizes of 10×1.3×1.5â mm3 and high transparency. They are shown to have low density of defects of 2.0×1010 â cm-3 and obvious photoconductivity. Moreover, they exhibit large bulk resistivity of 2.13×1011 â Ω cm and good X-ray attenuation coefficient. Consequently, the vertical structured (PDA)BiBr5 single crystal X-ray photoconductor produces a sensitivity of 3.8â µC Gyair -1 â cm-2 . This study provides a facile strategy for synthesizing bulk hybrid bismuth bromides single crystals with potential X-ray detection application.