RESUMEN
This study investigated the efficacy of oxidised iron-loaded activated carbon cloth (Fe-ACC) for selective recovery of phosphorous. The capacitive deionisation (CDI) technology was employed, for rapid removal of phosphate, with the aim of reducing the reliance on high alkalinity environment for the regeneration of Fe-ACC electrode. Multiple experimental parameters, including applied potential, pH, and co-existing ions, were studied. Additionally, the CDI system was tested on a real water matrix (Lake Ormstrup, Denmark) to elucidate the electrodes' performance on selective recovery of phosphate. About 69 ± 10% of the adsorbed phosphate were released at pH 12 via pure chemical desorption, which was ~ 50% higher than that at pH 9. The CDI system successfully demonstrated the selective removal of phosphate from the lake water. It reduced the concentration of phosphate from 1.69 to 0.49 mg/L with a 71% removal efficiency, while the removal percentages of other anions, namely chloride, sulphate, bromide, nitrite, nitrate, and fluoride, were 10%, 7%, 1%, 1.5%, 4%, and 7%, respectively.
RESUMEN
Fish air breathing is crucial for the transition of vertebrates from water to land. So far, the genes involved in fish air breathing have not been well identified. Here, we performed gene enrichment analysis of positively selected genes (PSGs) in loach (Misgurnus anguillicaudatus, an air-breathing fish) in comparison to Triplophysa tibetana (a non-air-breathing fish), haplotype-resolved genome assembly of the loach, and gene evolutionary analysis of air-breathing and non-air-breathing fishes and found that the PSG mex3a originated from ancient air-breathing fish species. Deletion of Mex3a impaired loach air-breathing capacity by inhibiting angiogenesis through its interaction with T-box transcription factor 20. Mex3a overexpression significantly promoted angiogenesis. Structural analysis and point mutation revealed the critical role of the 201st amino acid in loach Mex3a for angiogenesis. Our findings innovatively indicate that the ancient mex3a is a fish air-breathing gene, which holds significance for understanding fish air breathing and provides a valuable resource for cultivating hypoxia-tolerant fish varieties.
Asunto(s)
Cipriniformes , Proteínas de Peces , Haplotipos , Animales , Haplotipos/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Cipriniformes/genética , Genoma/genética , Respiración/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Evolución Molecular , Neovascularización Fisiológica/genéticaRESUMEN
Multicentre redox metalloproteins undergo conformational changes on electrochemical surfaces, or on enzyme substrate binding. The two-centre copper enzymes, laccase (Type I and TypeII/III Cu) and nitrite reductase (CuNIR) (Type I and Type II Cu) are examples. With some exceptions, these enzymes show no non-turnover voltammetry on Au(111)-surfaces modified by thiol based self-assembled molecular monolayers, but dioxygen or nitrite substrate triggers strong electrocatalytic signals. Scanning tunnelling microscopy also shows high conductivity only when dioxygen or nitrite is present. Atomic force microscopy shows constant CuNIR height but pronounced structural expansion in the electrocatalytic range on nitrite binding. We have recently offered a rationale, based on ab initio quantum chemical studies of water/nitrite substitution in a 740-atom CuNIR fragment. Presently we provide much more detailed structural assignment mapped to single-residue resolution. NO2 --binding induces both a 2â Å Cu-Cu distance increase, and pronounced frontier orbital delocalization strongly facilitating ET between the Cu regions. The conformational changes transmit from the catalytic Type II centre to the electron inlet Type I centre, via the His129-Cys130 ligands, and via Type I-Cys130 or Type I-His129 ending at Type II Asp92. The ET patterns are reflected in different atomic Mulliken charges in the water and nitrite CuNIR fragment.
RESUMEN
Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems. In order to address BESs as a practical option for antibiotic removal, we deeply analyze the detoxification mechanism of antibiotic treatment by BESs, involving BES fundamentals, extracellular electron transfer and degradation pathways via functional enzymes of microorganisms, followed by systematic evaluations of the operational conditions. Furthermore, the recently-emerged BESs combined with other techniques for practical applications has been summarized and emphasized. This review further directions the current limitations such as the potential risk of antibiotic resistance genes, etc., and prospects for the attenuation of antibiotics via BESs related techniques, promoting the development of practical application.
RESUMEN
Objective: To assess the effectiveness of acupuncture, exercise rehabilitation, and their combination in treating knee osteoarthritis (KOA). Methods: This randomized controlled trial was done on patients with KOA, who were randomly allocated to three groups: acupuncture (AP), exercise rehabilitation (ER), or a combination of acupuncture and exercise rehabilitation (AE). The study lasted 12 weeks with 4 weeks of treatment and 8 weeks of follow-up. The primary outcome was the response rate, which was determined by the percentage of participants who experienced a significant improvement in pain and function by the fourth week. The primary analysis utilized a Z test for proportions in the modified intent-to-treat population, consisting of all randomized participants with at least one post-baseline measurement. Results: Out of the 120 patients initially enrolled in the study, 110 completed the trial and were included in the intention-to-treat analysis. Response rates at week 4 were 65.7% (23 out of 35), 58.3% (21 out of 36), and 83.3% (32 out of 39) in the AP, ER, and AE groups, respectively. The response rate in the AE group was found to be significantly higher than that in the ER group at week 4. No significant differences were observed in the overall response rates between the AP and ER groups, as well as between the AP and AE groups. Conclusion: Our research indicates that both acupuncture and exercise rehabilitation can effectively enhance pain relief, functional improvement, and joint mobility in individuals aged 45 to 70 with moderate to severe chronic KOA. Furthermore, the AE group demonstrated the highest response rate. These beneficial outcomes were sustained for a minimum of 8 weeks post-treatment. The combination of acupuncture and exercise rehabilitation appears to enhance the overall therapeutic efficacy for KOA patients, suggesting a synergistic effect that may be particularly advantageous for those with moderate to severe symptoms.
RESUMEN
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Asunto(s)
Procesos Autotróficos , Benzopiranos , Desnitrificación , Hidrógeno , Hidrógeno/metabolismo , Nitratos/metabolismo , Nitrógeno , Bacterias/metabolismo , Técnicas Electroquímicas/métodosRESUMEN
In nature, diploids and tetraploids are two common types of polyploid evolution. Misgurnus anguillicaudatus (mud loach) is a remarkable fish species that exhibits both diploid and tetraploid forms. However, reconstructing the four haplotypes of its autotetraploid genome remains unresolved. Here, we generated the first haplotype-resolved, chromosome-level genome of autotetraploid M. anguillicaudatus with a size of 4.76 Gb, contig N50 of 6.78 Mb, and scaffold N50 of 44.11 Mb. We identified approximately 2.9 Gb (61.03% of genome) of repetitive sequences and predicted 91,485 protein-coding genes. Moreover, allelic gene expression levels indicated the absence of significant dominant haplotypes within the autotetraploid loach genome. This genome will provide a valuable biological model for unraveling the mechanisms of polyploid formation and evolution, adaptation to environmental changes, and benefit for aquaculture applications and biodiversity conservation.
Asunto(s)
Cipriniformes , Genoma , Haplotipos , Tetraploidía , Animales , Cipriniformes/genética , Cromosomas , PoliploidíaRESUMEN
Peroxidases are promising catalysts for oxidation reactions, yet their practical utility has been hindered by the fact that they require hydrogen peroxide (H2O2), which at high concentrations can cause deactivation of enzymes. Practical processes involving the use of peroxidases require the frequent addition of low concentrations of H2O2. In situ generation of H2O2 can be achieved using oxidase-type enzymes. In this study, a three-enzyme cascade system comprised of a H2O2 generator (glucose oxidase (GOx)), H2O2-dependent enzymes (chloroperoxidase (CPO) or horseradish peroxidase (HRP)), and a H2O2 scavenger (catalase (CAT)) was deployed in a flow reactor. Immobilization of the enzymes on a graphite rod was achieved through electrochemically driven physical adsorption, followed by cross-linking with glutaraldehyde. Modeling studies indicated that the flow in the reactor was laminar (Reynolds number, R e < 2000) and was nearly fully developed at the midplane of the annular reactor. Immobilized CAT and GOx displayed good stability, retaining 79% and 84% of their initial activity, respectively, after three cycles of operation. Conversely, immobilized CPO exhibited a considerable reduction in activity after one use, retaining only 30% of its initial activity. The GOx-CAT-GRE system enabled controlled delivery of H2O2 in a more stable manner with a 4-fold enhancement in the oxidation of indole compared to the direct addition of H2O2. Using CPO in solution coupled with GOx-CAT-GRE yields of 90% for the oxidation of indole to 2-oxyindole and of 93% and 91% for the chlorination of thymol and carvacrol, respectively.
RESUMEN
The liver is the largest internal organ of the human body. It has a complex structure and function and plays a vital role in drug metabolism. In recent decades, extensive research has aimed to develop in vitro models that can simulate liver function to demonstrate changes in the physiological and pathological environment of the liver. Animal models and in vitro cell models are common, but the data obtained from animal models lack relevance when applied to humans, while cell models have limited predictive ability for metabolism and toxicity in humans. Recent advancements in tissue engineering, biomaterials, chip technology, and 3D bioprinting have provided opportunities for further research in in vitro models. Among them, liver-on-a-Chip (LOC) technology has made significant achievements in reproducing the in vivo behavior, physiological microenvironment, and metabolism of cells and organs. In this review, we discuss the development of LOC and its research progress in liver diseases, hepatotoxicity tests, and drug screening, as well as chip combinations. First, we review the structure and the physiological function of the liver. Then, we introduce the LOC technology, including general concepts, preparation materials, and methods. Finally, we review the application of LOC in disease modeling, hepatotoxicity tests, drug screening, and chip combinations, as well as the future challenges and directions of LOC.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ingeniería de Tejidos , Animales , Humanos , Tecnología , Dispositivos Laboratorio en un ChipRESUMEN
Self-sustained smart textiles require a miniaturized and flexible power source, while the state-of-the-art lithium-ion battery cannot be seamlessly integrated into smart textiles. Enzymatic biofuel cells (EBFC), utilizing physiological glucose or lactate as fuels to convert chemical energy into electricity, are a potential alternative power source. In comparison to other proposed energy harvesters relying on solar and biomechanical energy, EBFCs feature several key properties, including continuous power generation, biocompatible interfaces without using toxic elements, simple configuration without extra packaging, and biodegradability. There is an urgent need to introduce EBFCs to the researchers working on smart textiles, who typically are not expert on bioelectrochemistry. This minireview first introduces the working principle of EBFC and then summarizes its recent progress on fibers, yarns, and textiles. It's expected that this review can help to bridge the knowledge gap and provide the community of smart textiles with information on both the strengths and limitations of EBFCs.
RESUMEN
Remediation of arsenic contamination is of great importance given the high toxicity and easy mobility of arsenic species in water and soil. This work reports a new and stable adsorbent for efficient elimination of arsenic by coating polyethyleneimine (PEI) molecules onto the surface of iron-doped birnessite (Fe-Bir). Characterization results of surface microstructure and crystalline feature (scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS), etc.) suggest that Fe-Bir/PEI possesses a fine particle structure, inhibiting the agglomeration of birnessite-typed MnO2 and offering abundant active sites for arsenic adsorption. Fe-Bir/PEI is capable of working in a wide pH range from 3 to 11, with an efficient removal capacity of 53.86 mg/g at initial pH (pH0) of 7. Meanwhile, commonly coexisting anions (NO3-, SO42-, and Cl-) and cations (Na+, K+, Ca2+ and Mg2+) pose no effect on the arsenic removal performance of Bir/PEI. Fe-Bir/PEI exhibits a good reusability for arsenic removal with low Mn and Fe ions leaching after 5 cycles. Besides, Fe-Bir/PEI possesses efficient remediation capability in simulated As-contaminated soil. The modification of PEI in Fe-Bir/PEI can adsorb newly formed As(V), which is impossible for the adsorbent without PEI. Further, the arsenic removal mechanism of Fe-Bir/PEI is revealed with redox effect, electrostatic attraction and hydrogen bonding.
RESUMEN
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , ElectrónicaRESUMEN
Anodic electro-fermentation (AEF), where an anode replaces the terminal electron acceptor, shows great promise. Recently a Lactococcus lactis strain blocked in NAD+ regeneration was demonstrated to use ferricyanide as an alternative electron acceptor to support fast growth, but the need for high concentrations of this non-regenerated electron acceptor limits practical applications. To address this, growth of this L. lactis strain, and an adaptively evolved (ALE) mutant with enhanced ferricyanide respiration capacity were investigated using an anode as electron acceptor in a bioelectrochemical system (BES) setup. Both strains grew well, however, the ALE mutant significantly faster. The ALE mutant almost exclusively generated 2,3-butanediol, whereas its parent strain mainly produced acetoin. The ALE mutant interacted efficiently with the anode, achieving a record high current density of 0.81 ± 0.05 mA/cm2. It is surprising that a Lactic Acid Bacterium, with fermentative metabolism, interacts so well with an anode, which demonstrates the potential of AEF.
RESUMEN
In order to achieve rapid, sensitive, and high-throughput determination of typical semi-volatile organic compounds (SVOCs) in soil samples, a method for the rapid determination of 63 SVOCs in soil was developed by optimizing and improving the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction technique in conjunction with gas chromatography-mass spectrometry (GC-MS) analysis. A small amount of soil sample (5.0 g) was vortexed with 10 mL of a mixture of acetone and n-hexane (V/V = 1 : 1) for 2 min, followed by rapid vortex purification and centrifugation using a mixture of copper powder and octadecylsilane (C18) dispersant. The resulting supernatant was then purified through a 0.22 µm filter membrane. The results showed that the 63 SVOCs exhibited good linear relationships within the concentration range of 100-5000 µg L-1, with correlation coefficients (R2) above 0.99. The method detection limit (MDL = 3.3 Sy/m) was lower than 0.050 mg kg-1. At a spike concentration of 1 mg kg-1, the recovery rates of the 63 SVOCs were almost above 70% (n = 7). Compared with the rapid solvent extraction (ASE) method specified in US EPA 3545 standard, this method reduced the organic solvent usage by 14 times and significantly shortened the operation time. Furthermore, this method did not involve any transfer or concentration steps of the extractant during the experimental process, reducing the exposure time of toxic compounds and providing support for the principles of green analytical chemistry. Moreover, in the detection of most compounds in the same batch of contaminated soil, the extraction results obtained by QuEChERS were superior to those obtained by the ASE method, providing evidence for the practical application of this method. This method is rapid, simple, accurate, requires a small sample volume, and causes minimal environmental pollution. It provides a high-throughput detection method for the rapid screening of SVOCs in soil.
RESUMEN
Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the S2O82- anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. (In operando) scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.
RESUMEN
Bio-slurry remediation technology, as a controllable bioremediation method, has the significant advantage of high remediation efficiency and can effectively solve the problems of high energy consumption and secondary pollution of traditional organic pollution site remediation technology. To further promote the application of this technology in the remediation of organically polluted soil, this paper summarizes the importance and advantages of bio-slurry remediation technology compared with traditional soil remediation technologies (physical, chemical, and biological). It introduces the technical infrastructure and its technological processes. Then, various factors that may affect its remediation performance are discussed. By analyzing the applications of this technology to the remediation of typical organic pollutant-(polycyclic aromatic hydrocarbons(PAHs), polychlorinated biphenyls(PCBs), total petroleum hydrocarbons(TPH), and pesticide) contaminated sites, the following key features of this remediation technology are summarised: (1) the technology has a wide range of applications and can be used in a versatile way in the remediation projects of various types of organic-contaminated soil sites such as in clay, sand, and high organic matter content soil; (2) the technology is highly controllable. Adjusting environmental parameters and operational conditions, such as nutrients, organic carbon sources (bio-stimulation), inoculants (bio-augmentation), water-to-soil ratio, etc., can control the remediation process, thus improving the restoration performance. To sum up, this bio-slurry remediation technology is an efficient, controllable and green soil remediation technology that has broad application prospects.
RESUMEN
Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.
Asunto(s)
Lactococcus lactis , Transporte de Electrón , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Electrones , Fermentación , Ferricianuros/metabolismo , Oxígeno/metabolismoRESUMEN
Multi-functional small molecules attached to an electrode surface can bind non-covalently to the redox enzyme fructose dehydrogenase (FDH) to ensure efficient electrochemical electron transfer (ET) and electrocatalysis of the enzyme in both mediated (MET) and direct (DET) ET modes. The present work investigates the potential of exploiting secondary, electrostatic and hydrophobic interactions between substituents on a small molecular bridge and the local FDH surfaces. Such interactions ensure alignment of the enzyme in an orientation favourable for both MET and DET. We have used a group of novel synthesized anthraquinones as the small molecule bridge, functionalised with electrostatically neutral, anionic, or cationic substituents. Particularly, we investigated the immobilisation of FDH on a nanoporous gold (NPG) electrode decorated with the novel synthesised anthraquinones using electrochemical methods. The best DET-capable fraction out of four anthraquinone derivatives tested is achieved for an anthraquinone functionalised with an anionic sulphonate group. Our study demonstrates, how the combination of chemical design and bioelectrochemistry can be brought to control alignment of enzymes in productive orientations on electrodes, a paradigm for thiol modified surfaces in biosensors and bioelectronics.
Asunto(s)
Técnicas Biosensibles , Deshidrogenasas de Carbohidratos , Antraquinonas , Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/metabolismo , Electrodos , Transporte de Electrón , Electrones , Enzimas Inmovilizadas/química , Fructosa/química , Fructosa/metabolismoRESUMEN
Electrochemical methods can be used to selectively modify the surfaces of electrodes, enabling the immobilisation of enzymes on defined areas on the surfaces of electrodes. Such selective immobilisation methods can be used to pattern catalysts on surfaces in a controlled manner. Using this approach, the selective patterning of the enzyme glucose oxidase on the electrodes was used to develop a flow reactor for the controlled delivery of the oxidant H2O2. GOx was immobilised on a glassy carbon electrode using polypyrrole, silica films, and diazonium linkers. The rate of production of H2O2 and the stability of the response was dependent on the immobilisation method. GOx encapsulated in polypyrrole was selected as the optimal method of immobilisation, with a rate of production of 91±11â µM h-1 for 4â hours of continuous operation. The enzyme was subsequently immobilised on carbon rod electrodes (surface area of 5.76â cm2) using a polypyrrole/Nafion® film and incorporated into a flow reactor. The rate of production of H2O2 was 602±57â µM h-1, with 100 % retention of activity after 7â h of continuous operation, demonstrating that such a system can be used to prepare H2O2 at continuous and stable rate for use in downstream oxidation reactions.
RESUMEN
Simultaneous capture of SO2 and NO x from flue gas is critical for coal-fired power generation. In this study, environmentally friendly and high-performance deep eutectic solvents based on ethylene glycol and ammonium bromide were designed to capture SO2 and NO2 simultaneously. The SO2 and NO2 absorption performances and absorption mechanisms were systematically investigated by 1H NMR and Fourier transform infrared (FT-IR) spectroscopy in combination with ab initio calculations using Gaussian software. The results showed that EG-TBAB DESs can absorb low concentrations of SO2 and NO2 from the flue gas simultaneously at low temperatures (≤50 °C). 1H NMR, FT-IR, and simulation results indicate that SO2 and NO2 are absorbed by forming EG-TBAB-SO2-NO2 complexes, Br- is the main active site for NO2 absorption, and NO2 is more active in an EG-TBAB-NO2-SO2 complex than SO2. EG-TBAB DESs exhibit outstanding regeneration capability, and absorption capacities remain unchanged after five absorption-desorption cycles. The fundamental understanding of simultaneous capture of SO2 and NO2 from this study enables DES structures to be rationally designed for efficient and low-cost desulfurization and denitrification reagents.