Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rice (N Y) ; 17(1): 52, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152344

RESUMEN

Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.

2.
Front Pharmacol ; 15: 1336310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389922

RESUMEN

CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.

3.
Front Physiol ; 14: 1279548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250662

RESUMEN

Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA