Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Clin Immunol ; 263: 110223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636890

RESUMEN

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Asunto(s)
Anemia Aplásica , Linfocitos T CD8-positivos , Proteínas Ligadas a GPI , Células Madre Hematopoyéticas , Interleucina-15 , Monocitos , Receptores de IgG , Humanos , Anemia Aplásica/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Interleucina-15/farmacología , Interleucina-15/inmunología , Receptores de IgG/metabolismo , Receptores de IgG/inmunología , Monocitos/inmunología , Monocitos/efectos de los fármacos , Femenino , Masculino , Adulto , Células Madre Hematopoyéticas/inmunología , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/inmunología , Persona de Mediana Edad , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/inmunología , Adulto Joven , Adolescente , Interferón gamma/inmunología , Interferón gamma/metabolismo , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-15/inmunología , Apoptosis/efectos de los fármacos , Diferenciación Celular/inmunología
2.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34373913

RESUMEN

Neutrophils are the most abundant vertebrate leukocytes and they are essential to host defense. Despite extensive investigation, the molecular network controlling neutrophil differentiation remains incompletely understood. GFI1 is associated with several myeloid disorders, but its role and the role of its co-regulators in granulopoiesis and pathogenesis are far from clear. Here, we demonstrate that zebrafish gfi1aa deficiency induces excessive neutrophil progenitor proliferation, accumulation of immature neutrophils from the embryonic stage, and some phenotypes similar to myelodysplasia syndrome in adulthood. Both genetic and epigenetic analyses demonstrate that immature neutrophil accumulation in gfi1aa-deficient mutants is due to upregulation of cebpa transcription. Increased transcription was associated with Lsd1-altered H3K4 methylation of the cebpa regulatory region. Taken together, our results demonstrate that Gfi1aa, Lsd1 and cebpa form a regulatory network that controls neutrophil development, providing a disease progression-traceable model for myelodysplasia syndrome. Use of this model could provide new insights into the molecular mechanisms underlying GFI1-related myeloid disorders as well as a means by which to develop targeted therapeutic approaches for treatment.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Hematopoyesis/genética , Histona Demetilasas/metabolismo , Neutrófilos/citología , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Proliferación Celular , Proteínas de Unión al ADN/deficiencia , Embrión no Mamífero , Epigénesis Genética , Células Precursoras de Granulocitos/citología , Células Precursoras de Granulocitos/metabolismo , Histona Demetilasas/genética , Neutrófilos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
3.
Proc Natl Acad Sci U S A ; 117(35): 21450-21458, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817427

RESUMEN

How overall principles of cell-type-specific gene regulation (the "logic") may change during ontogeny is largely unexplored. We compared transcriptomic, epigenomic, and three-dimensional (3D) genomic profiles in embryonic (EryP) and adult (EryD) erythroblasts. Despite reduced chromatin accessibility compared to EryP, distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb occupancy. EryP-/EryD-shared enhancers are highly correlated with red blood cell identity genes, whereas cell-type-specific regulation employs different cis elements in EryP and EryD cells. In contrast to EryP-specific genes, which exhibit promoter-centric regulation through Gata1, EryD-specific genes rely more on distal enhancers for regulation involving Myb-mediated enhancer activation. Gata1 HiChIP demonstrated an overall increased enhancer-promoter interactions at EryD-specific genes, whereas genome editing in selected loci confirmed distal enhancers are required for gene expression in EryD but not in EryP. Applying a metric for enhancer dependence of transcription, we observed a progressive reliance on cell-specific enhancers with increasing ontogenetic age among diverse tissues of mouse and human origin. Our findings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type-specific genes in embryonic cells and increased combinatorial enhancer-driven control in adult cells.


Asunto(s)
Factores de Edad , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Cromatina , Elementos de Facilitación Genéticos/genética , Eritroblastos , Eritropoyesis/fisiología , Femenino , Expresión Génica , Genómica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética
4.
Stem Cells ; 38(7): 818-821, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32159910

RESUMEN

The four transcription factors of the Yamanaka cocktail (Oct4, Sox2, Klf4, and Myc, termed OSKM) are famously capable of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). In an article recently published in Nature Communications, Wang et al describe the unexpected discovery that short-term activation of OSKM expression in acute myeloid leukemia cells in vivo induces apoptosis while negligibly affecting normal hematopoietic stem and progenitor cells (Nat Commun 2019;10:5594). These findings have potential implications for novel anticancer strategies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Leucemia/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo
5.
Mol Cell ; 74(3): 542-554.e5, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30905509

RESUMEN

Developing and adult tissues use different cis-regulatory elements. Although DNA at some decommissioned embryonic enhancers is hypomethylated in adult cells, it is unknown whether this putative epigenetic memory is complete and recoverable. We find that, in adult mouse cells, hypomethylated CpG dinucleotides preserve a nearly complete archive of tissue-specific developmental enhancers. Sites that carry the active histone mark H3K4me1, and are therefore considered "primed," are mainly cis elements that act late in organogenesis. In contrast, sites decommissioned early in development retain hypomethylated DNA as a singular property. In adult intestinal and blood cells, sustained absence of polycomb repressive complex 2 indirectly reactivates most-and only-hypomethylated developmental enhancers. Embryonic and fetal transcriptional programs re-emerge as a result, in reverse chronology to cis element inactivation during development. Thus, hypomethylated DNA in adult cells preserves a "fossil record" of tissue-specific developmental enhancers, stably marking decommissioned sites and enabling recovery of this epigenetic memory.


Asunto(s)
Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Epigenómica , Histonas/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Ratones
6.
Sci Rep ; 8(1): 14335, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254371

RESUMEN

Thymic epithelial cells (TEC) are essential for thymocyte differentiation and repertoire selection. Despite their indispensable role in generating functional T cells, the molecular mechanisms that orchestrate TEC development from endodermal progenitors in the third pharyngeal pouch (3rd PP) are not fully understood. We recently reported that the T-box transcription factor TBX1 negatively regulates TEC development. Although initially expressed throughout the 3rd PP, Tbx1 becomes downregulated in thymus-fated progenitors and when ectopically expressed impairs TEC progenitor proliferation and differentiation. Here we show that ectopic Tbx1 expression in thymus fated endoderm increases expression of Polycomb repressive complex 2 (PRC2) target genes in TEC. PRC2 is an epigenetic modifier that represses gene expression by catalyzing trimethylation of lysine 27 on histone H3. The increased expression of PRC2 target genes suggests that ectopic Tbx1 interferes with PRC2 activity and implicates PRC2 as an important regulator of TEC development. To test this hypothesis, we used Foxn1Cre to delete Eed, a PRC2 component required for complex stability and function in thymus fated 3rd PP endoderm. Proliferation and differentiation of fetal and newborn TEC were disrupted in the conditional knockout (EedCKO) mutants leading to severely dysplastic adult thymi. Consistent with PRC2-mediated transcriptional silencing, the majority of differentially expressed genes (DEG) were upregulated in EedCKO TEC. Moreover, a high frequency of EedCKO DEG overlapped with DEG in TEC that ectopically expressed Tbx1. These findings demonstrate that PRC2 plays a critical role in TEC development and suggest that Tbx1 expression must be downregulated in thymus fated 3rd PP endoderm to ensure optimal PRC2 function.


Asunto(s)
Células Epiteliales/citología , Complejo Represivo Polycomb 2/metabolismo , Timo/citología , Animales , Diferenciación Celular , Linaje de la Célula , Eliminación de Gen , Regulación de la Expresión Génica , Histonas/metabolismo , Metilación , Ratones , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio T Box/genética
7.
Cell Metab ; 27(6): 1294-1308.e7, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29754954

RESUMEN

To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track ß cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. ß cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring ß cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of ß cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of ß cell identity in diabetes.


Asunto(s)
Cromatina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Silenciador del Gen , Células Secretoras de Insulina/metabolismo , Complejo Represivo Polycomb 2/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/genética , Epigenómica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Hiperglucemia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Complejo Represivo Polycomb 2/genética , Análisis de la Célula Individual
8.
Cancer Res ; 77(17): 4613-4625, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655788

RESUMEN

Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR.


Asunto(s)
Neoplasias Óseas/patología , Osteosarcoma/patología , Biosíntesis de Proteínas , Proteína-Arginina N-Metiltransferasas/fisiología , Proteína de Retinoblastoma/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Noqueados , Osteosarcoma/genética , Osteosarcoma/metabolismo , Proteómica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Stem Cells ; 35(7): 1773-1785, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28436588

RESUMEN

ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Ergkd ) in which Erg expression can be conditionally restored by Cre recombinase. Ergkd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Ergkd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin- Sca-1+ c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Ergkd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785.


Asunto(s)
Apoptosis/genética , Dosificación de Gen , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Oncogénicas/genética , Regulador Transcripcional ERG/genética , Animales , Antimetabolitos/farmacología , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Femenino , Fluorouracilo/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Prueba de Complementación Genética , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Integrasas/genética , Integrasas/metabolismo , Masculino , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Regulador Transcripcional ERG/deficiencia
10.
Elife ; 62017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28394251

RESUMEN

In proliferating cells, where most Polycomb repressive complex 2 (PRC2) studies have been performed, gene repression is associated with PRC2 trimethylation of H3K27 (H3K27me3). However, it is uncertain whether PRC2 writing of H3K27me3 is mechanistically required for gene silencing. Here, we studied PRC2 function in postnatal mouse cardiomyocytes, where the paucity of cell division obviates bulk H3K27me3 rewriting after each cell cycle. EED (embryonic ectoderm development) inactivation in the postnatal heart (EedCKO) caused lethal dilated cardiomyopathy. Surprisingly, gene upregulation in EedCKO was not coupled with loss of H3K27me3. Rather, the activating histone mark H3K27ac increased. EED interacted with histone deacetylases (HDACs) and enhanced their catalytic activity. HDAC overexpression normalized EedCKO heart function and expression of derepressed genes. Our results uncovered a non-canonical, H3K27me3-independent EED repressive mechanism that is essential for normal heart function. Our results further illustrate that organ dysfunction due to epigenetic dysregulation can be corrected by epigenetic rewiring.


Asunto(s)
Represión Epigenética , Corazón/embriología , Histona Desacetilasas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Células Cultivadas , Metilación , Ratones , Ratones Noqueados , Miocitos Cardíacos/fisiología
11.
Nature ; 543(7644): 270-274, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241139

RESUMEN

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Dominios Proteicos , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Edición Génica , Genoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteolisis , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética
12.
Cancer Discov ; 6(11): 1237-1247, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27630126

RESUMEN

Tyrosine kinase inhibitors (TKI) have revolutionized chronic myelogenous leukemia (CML) management. Disease eradication, however, is hampered by innate resistance of leukemia-initiating cells (LIC) to TKI-induced killing, which also provides the basis for subsequent emergence of TKI-resistant mutants. We report that EZH2, the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is overexpressed in CML LICs and required for colony formation and survival and cell-cycle progression of CML cell lines. A critical role for EZH2 is supported by genetic studies in a mouse CML model. Inactivation of Ezh2 in conventional conditional mice and through CRISPR/Cas9-mediated gene editing prevents initiation and maintenance of disease and survival of LICs, irrespective of BCR-ABL1 mutational status, and extends survival. Expression of the EZH2 homolog EZH1 is reduced in EZH2-deficient CML LICs, creating a scenario resembling complete loss of PRC2. EZH2 dependence of CML LICs raises prospects for improved therapy of TKI-resistant CML and/or eradication of disease by addition of EZH2 inhibitors. SIGNIFICANCE: This work defines EZH2 as a selective vulnerability for CML cells and their LICs, regardless of BCR-ABL1 mutational status. Our findings provide an experimental rationale for improving disease eradication through judicious use of EZH2 inhibitors within the context of standard-of-care TKI therapy. Cancer Discov; 6(11); 1237-47. ©2016 AACR.See related article by Scott et al., p. 1248This article is highlighted in the In This Issue feature, p. 1197.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 2/biosíntesis , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteínas de Fusión bcr-abl/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Transducción de Señal
13.
Nat Commun ; 7: 12047, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27329220

RESUMEN

Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-ß signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways.


Asunto(s)
Huesos/metabolismo , Condrocitos/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Complejo Represivo Polycomb 2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Femenino , Eliminación de Gen , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cifosis , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Complejo Represivo Polycomb 2/genética , Transducción de Señal , Células Madre/citología
14.
Cell Rep ; 14(8): 1953-65, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904942

RESUMEN

Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Leucémica de la Expresión Génica , Genes ras , Complejo Represivo Polycomb 2/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factor de Transcripción STAT3/genética , Animales , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Histonas/genética , Histonas/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Ratones , Ratones Transgénicos , Fosforilación , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/metabolismo , Células Precursoras de Linfocitos T/metabolismo , Células Precursoras de Linfocitos T/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Transcripción Genética
15.
Cancer Cell ; 29(1): 17-31, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26766588

RESUMEN

Polycomb repressive complexes (PRC) are frequently implicated in human cancer, acting either as oncogenes or tumor suppressors. Here, we show that PRC2 is a critical regulator of KRAS-driven non-small cell lung cancer progression. Modulation of PRC2 by either Ezh2 overexpression or Eed deletion enhances KRAS-driven adenomagenesis and inflammation, respectively. Eed-loss-driven inflammation leads to massive macrophage recruitment and marked decline in tissue function. Additional Trp53 inactivation activates a cell-autonomous epithelial-to-mesenchymal transition program leading to an invasive mucinous adenocarcinoma. A switch between methylated/acetylated chromatin underlies the tumor phenotypic evolution, prominently involving genes controlled by Hippo/Wnt signaling. Our observations in the mouse models were conserved in human cells. Importantly, PRC2 inactivation results in context-dependent phenotypic alterations, with implications for its therapeutic application.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Acetilación , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Histonas/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones Transgénicos , Complejo Represivo Polycomb 2/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
16.
Proc Natl Acad Sci U S A ; 112(52): 15988-93, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668377

RESUMEN

Changes of histone modification status at critical lineage-specifying gene loci in multipotent precursors can influence cell fate commitment. The contribution of these epigenetic mechanisms to natural killer (NK) cell lineage determination from common lymphoid precursors is not understood. Here we investigate the impact of histone methylation repressive marks (H3 Lys27 trimethylation; H3K27(me3)) on early NK cell differentiation. We demonstrate that selective loss of the histone-lysine N-methyltransferase Ezh2 (enhancer of zeste homolog 2) or inhibition of its enzymatic activity with small molecules unexpectedly increased generation of the IL-15 receptor (IL-15R) CD122(+) NK precursors and mature NK progeny from both mouse and human hematopoietic stem and progenitor cells. Mechanistic studies revealed that enhanced NK cell expansion and cytotoxicity against tumor cells were associated with up-regulation of CD122 and the C-type lectin receptor NKG2D. Moreover, NKG2D deficiency diminished the positive effects of Ezh2 inhibitors on NK cell commitment. Identification of the contribution of Ezh2 to NK lineage specification and function reveals an epigenetic-based mechanism that regulates NK cell development and provides insight into the clinical application of Ezh2 inhibitors in NK-based cancer immunotherapies.


Asunto(s)
Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Células Asesinas Naturales/metabolismo , Complejo Represivo Polycomb 2/genética , Animales , Línea Celular Tumoral , Linaje de la Célula/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2 , Citometría de Flujo , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Immunoblotting , Subunidad beta del Receptor de Interleucina-2/genética , Subunidad beta del Receptor de Interleucina-2/metabolismo , Células K562 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Rep ; 12(9): 1456-70, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26299972

RESUMEN

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Impresión Genómica , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/genética , Animales , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Ratones , MicroARNs/genética , Proteínas Nucleares/genética , Complejo Represivo Polycomb 2/genética , Unión Proteica
18.
Exp Hematol ; 43(11): 930-935.e6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26118502

RESUMEN

Polycomb repressive complex 2 (PRC2) is a chromatin regulator with central roles in development and cancer. The canonical function of PRC2 is the trimethylation of histone 3 on lysine residue 27. This epigenetic modification is associated with gene silencing. Both tumor suppressor and oncogenic functions have been reported for PRC2, depending on cellular context. In leukemia mediated by the leukemogenic fusion MLL-AF9, complete ablation of canonical PRC2 function by genetic inactivation of the core component embryonic ectoderm development (Eed) or by combined pharmacologic inhibition of the PRC2 methyltransferases EZH2 and EZH1 has a strong anti-leukemic effect, and this effect has been linked to de-repression of the PRC2 target locus Cdkn2a. We asked whether inactivation of Cdkn2a is sufficient to restore leukemic activity of Eed-inactivated MLL-AF9 leukemia cells, using combined genetic inactivation of Cdkn2a and Eed. We found that Cdkn2a inactivation partially rescues in vitro and in vivo growth of Eed-inactivated MLL-AF9 cells. However, the growth of Eed-null Cdkn2a-null MLL-AF9 cells in the absence of Cdkn2a remained severely compromised in vitro and in vivo, compared with that of their Eed-floxed Cdkn2a-null counterparts. RNA sequencing analysis revealed that several genes previously implicated in inefficient growth of MLL-AF9-transformed cells, including Gata2, Egr1, and Cdkn2b were de-repressed as a consequence of Eed inactivation. Furthermore, we found that direct binding targets of MLL fusion proteins are negatively enriched in Eed-inactivated Cdkn2a-null MLL-AF9-transformed cells. Our data indicate that interference with PRC2 function affects MLL-AF9-mediated leukemogenesis by both Cdkn2a-dependent and Cdkn2a-independent mechanisms.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Leucemia/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Leucemia/genética , Leucemia/patología , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas de Fusión Oncogénica/genética , Complejo Represivo Polycomb 2/genética , Células Tumorales Cultivadas
19.
J Neurosci ; 35(22): 8640-52, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041929

RESUMEN

Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/citología , Animales , Animales Recién Nacidos , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Hedgehog/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteína P0 de la Mielina/genética , Proteína Oncogénica v-akt/metabolismo , Complejo Represivo Polycomb 2/genética , Ratas , Nervio Ciático/ultraestructura , Transducción de Señal/fisiología , Transfección
20.
Mol Cell ; 57(2): 304-316, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25578878

RESUMEN

Polycomb repressive complex 2 (PRC2) plays crucial roles in transcriptional regulation and stem cell development. However, the context-specific functions associated with alternative subunits remain largely unexplored. Here we show that the related enzymatic subunits EZH1 and EZH2 undergo an expression switch during blood cell development. An erythroid-specific enhancer mediates transcriptional activation of EZH1, and a switch from GATA2 to GATA1 controls the developmental EZH1/2 switch by differential association with EZH1 enhancers. We further examine the in vivo stoichiometry of the PRC2 complexes by quantitative proteomics and reveal the existence of an EZH1-SUZ12 subcomplex lacking EED. EZH1 together with SUZ12 form a non-canonical PRC2 complex, occupy active chromatin, and positively regulate gene expression. Loss of EZH2 expression leads to repositioning of EZH1 to EZH2 targets. Thus, the lineage- and developmental stage-specific regulation of PRC2 subunit composition leads to a switch from canonical silencing to non-canonical functions during blood stem cell specification.


Asunto(s)
Factores de Transcripción GATA/fisiología , Complejo Represivo Polycomb 2/metabolismo , Secuencia de Bases , Carcinogénesis , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Células Eritroides/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas , Histonas/metabolismo , Humanos , Células K562 , Metilación , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA