Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Technol Cancer Res Treat ; 22: 15330338231212073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920989

RESUMEN

Background: Endoplasmic reticulum (ER) stress plays a pro-apoptotic role in colorectal adenocarcinoma (COAD). This study aimed to develop a novel ER-stress-related prognostic risk model for COAD and provide support for COAD cohorts with different risk score responses to immune checkpoint inhibitor therapies. Methods: TCGA-COAD and GSE39582 were included in this prospective study. Univariate and multivariate Cox analyses were performed to identify prognostic ER stress-related genes (ERSGs). Accordingly, the immune infiltration landscape and immunotherapy response in different risk groups were assessed. Finally, the expression of prognostic genes in 10 normal and 10 COAD tissue samples was verified using reverse transcription-quantitative polymerase chain reaction. Results: Eight prognostic genes were selected to establish an ERSG-based signature in the training set of the TCGA-COAD cohort. The accuracy of this was confirmed using a testing set of TCGA-COAD and GSE39582 cohorts. Gene set variation analysis indicated that differential functionality in high-low-risk groups was related to immune-related pathways. Corresponding to this, CD36, TIMP1, and PTGIS were significantly associated with 19 immune cells with distinct proportions between the different risk groups, such as central memory CD4T cells and central memory CD8T cells. Moreover, the risk score was considered effective for predicting the clinical response to immunotherapy, and the immunotherapy response was significantly and negatively correlated with the risk score of individuals with COAD. Furthermore, the immune checkpoint inhibitor treatment was less effective in the high-risk group, where the expression levels of PD-L1 and tumor immune dysfunction and exclusion scores in the high-risk group were significantly increased. Finally, the experimental results demonstrated that the expression trends of prognostic genes in clinical samples were consistent with the results from public databases. Conclusion: Our study established a novel risk signature to predict the COAD prognosis of patients and provide theoretical support for the clinical treatment of COAD.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Pronóstico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Prospectivos , Inmunoterapia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia
2.
Transl Neurosci ; 8: 9-14, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28400978

RESUMEN

AIM: Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. METHODS: Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. RESULTS: Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. CONCLUSION: These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA