Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
CNS Neurosci Ther ; 30(7): e14847, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973196

RESUMEN

AIMS: Growing evidence suggests that an imbalanced gut microbiota composition plays a crucial role in the development of neuromyelitis optica spectrum disorders (NMOSD), an inflammatory demyelinating disease primarily affecting the optic nerves and central nervous system (CNS). In light of this, we explored the potential therapeutic benefits of GV-971 in NMOSD. GV-971 is a drug used for treating mild-to-moderate Alzheimer's disease, which targets the gut-brain axis and reduces neuroinflammation. METHODS: To evaluate GV-971's effects, we employed the experimental autoimmune encephalomyelitis (EAE) mouse model to establish NMOSD animal models. This was achieved by injecting NMO-IgG into aged mice (11 months old) or using NMO-IgG along with complement injection and microbubble-enhanced low-frequency ultrasound (MELFUS) techniques in young mice (7 weeks old). We assessed the impact of GV-971 on incidence rate, clinical scores, body weight, and survival, with methylprednisolone serving as a positive control. In NMOSD models of young mice, we analyzed spinal cord samples through H&E staining, immunohistochemistry, and Luxol Fast Blue staining. Fecal samples collected at different time points underwent 16S rRNA gene sequencing, while plasma samples were analyzed using cytokine array and untargeted metabolomics analysis. RESULTS: Our findings indicated that GV-971 significantly reduced the incidence of NMOSD, alleviated symptoms, and prolonged survival in NMOSD mouse models. The NMOSD model exhibited substantial neuroinflammation and injury, accompanied by imbalances in gut microbiota, peripheral inflammation, and metabolic disorders, suggesting a potentially vicious cycle that accelerates disease pathogenesis. Notably, GV-971 effectively reduces neuroinflammation and injury, and restores gut microbiota composition, as well as ameliorates peripheral inflammation and metabolic disorders. CONCLUSIONS: GV-971 attenuates the progression of NMOSD in murine models and reduces neuroinflammation and injury, likely through its effects on remodeling gut microbiota and peripheral inflammation and metabolic disorders.


Asunto(s)
Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Neuromielitis Óptica , Animales , Neuromielitis Óptica/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Femenino , Modelos Animales de Enfermedad
2.
Mol Cancer Ther ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082754

RESUMEN

The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll-like receptor 7 (TLR7) agonist MTT-5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment (TME). This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT-5. In vivo evaluation of Tras-DXd-MTL1's anti-tumor potency revealed a notably superior performance compared to the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.

3.
Front Immunol ; 15: 1395854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076979

RESUMEN

Introduction: Humanization is typically adopted to reduce the immunogenicity of murine antibodies generated by hybridoma technology when used in humans. Methods: Two different strategies of antibody humanization are popularly employed, including "complementarity determining region (CDR) grafting" and "framework (FR) shuffling" to humanize a murine antibody against human programmed death-1 (PD-1), XM PD1. In CDR-grafting humanization, the CDRs of XM PD-1, were grafted into the human FR regions with high homology to the murine FR counterparts, and back mutations of key residues were performed to retain the antigen-binding affinities. While in FR-shuffling humanization, a combinatorial library of the six murine CDRs in-frame of XM PD-1 was constructed to a pool of human germline FRs for high-throughput screening for the most favorable variants. We evaluated many aspects which were important during antibody development of the molecules obtained by the two methods, including antibody purity, thermal stability, binding efficacy, predicted humanness, and immunogenicity, along with T cell epitope prediction for the humanized antibodies. Results: While the ideal molecule was not achieved through CDR grafting in this particular instance, FR-shuffling proved successful in identifying a suitable candidate. The study highlights FR-shuffling as an effective complementary approach that potentially increases the success rate of antibody humanization. It is particularly noted for its accessibility to those with a biological rather than a computational background. Discussion: The insights from this comparison are intended to assist other researchers in selecting appropriate humanization strategies for drug development, contributing to broader application and understanding in the field.


Asunto(s)
Regiones Determinantes de Complementariedad , Receptor de Muerte Celular Programada 1 , Animales , Humanos , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Regiones Determinantes de Complementariedad/inmunología , Regiones Determinantes de Complementariedad/genética , Anticuerpos Monoclonales Humanizados/inmunología , Epítopos de Linfocito T/inmunología
4.
Chin J Nat Med ; 22(6): 568-576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906603

RESUMEN

Nine new germacranolides, sylvaticalides A-H (1-9), and three known analogues (10-12) were isolated from the aerial part of Vernonia sylvatica. Their structures were established using comprehensive spectroscopic analysis, including high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. Their absolute configurations were determined by X-ray diffraction experiments. The anti-inflammatory activities of all isolated compounds were assessed by evaluating their inhibitory effects on the nuclear factor kappa B (NF-κB) pathway, which was activated by lipopolysaccharide (LPS)-stimulated human THP1-Dual cells, and the interferon-stimulated gene (ISG) pathway, activated by STING agonist MSA-2 in the same cell model. Compounds 1, 2 and 6 showed inhibitory effects on the NF-κB and ISG signaling pathways, with IC50 values ranging from 4.12 to 10.57 µmol·L-1.


Asunto(s)
Antiinflamatorios , Lactonas , FN-kappa B , Sesquiterpenos de Germacrano , Vernonia , Vernonia/química , Humanos , Sesquiterpenos de Germacrano/farmacología , Sesquiterpenos de Germacrano/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Lactonas/farmacología , Lactonas/química , Lactonas/aislamiento & purificación , FN-kappa B/metabolismo , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Componentes Aéreos de las Plantas/química , Lipopolisacáridos/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación
5.
Mol Divers ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683489

RESUMEN

Stimulator of interferon gene (STING) plays critical roles in the cytoplasmic DNA-sensing pathway and in the induction of inflammatory response. Aberrant cytoplasmic DNA accumulation and STING activation are implicated in numerous inflammatory and autoimmune diseases. Here, we reported the discovery of a series of thiazolecarboxamide-based STING inhibitors through a molecular planarity/symmetry disruption strategy. The privileged compound 15b significantly inhibited STING signaling and suppressed immune-inflammatory cytokine levels in both human and murine cells. In vivo experiments demonstrated 15b effectively ameliorated immune-inflammatory cytokines upregulation in MSA-2-stimulated and Trex1-D18N mice. Furthermore, compound 15b exhibited enhanced efficacy in suppressing interferon-stimulated gene 15 (ISG15), a critical positive feedback regulator of STING. Overall, compound 15b deserves further development for the treatment of STING-associated inflammatory and autoimmune diseases.

6.
Psychiatry Res ; 334: 115804, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417224

RESUMEN

Major depressive disorder (MDD) involves systemic changes in peripheral blood and gut microbiota, but the current understanding is incomplete. Herein, we conducted a multi-omics analysis of fecal and blood samples obtained from an observational cohort including MDD patients (n = 99) and healthy control (HC, n = 50). 16S rRNA sequencing of gut microbiota showed structural alterations in MDD, as characterized by increased Enterococcus. Metagenomics sequencing of gut microbiota showed substantial functional alterations including upregulation in the superpathway of the glyoxylate cycle and fatty acid degradation and downregulation in various metabolic pathways in MDD. Plasma metabolomics revealed decreased amino acids and bile acids, together with increased sphingolipids and cholesterol esters in MDD. Notably, metabolites involved in arginine and proline metabolism were decreased while sphingolipid metabolic pathway were increased. Mass cytometry analysis of blood immune cell subtypes showed rises in proinflammatory immune subsets and declines in anti-inflammatory immune subsets in MDD. Furthermore, our findings revealed disease severity-related factors of MDD. Interestingly, we classified MDD into two immune subtypes that were highly correlated with disease relapse. Moreover, we established discriminative signatures that differentiate MDD from HC. These findings contribute to a comprehensive understanding of the MDD pathogenesis and provide valuable resources for the discovery of biomarkers.


Asunto(s)
Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Humanos , Disbiosis/complicaciones , Multiómica , ARN Ribosómico 16S
7.
Eur J Med Chem ; 267: 116211, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359537

RESUMEN

The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Nucleotidiltransferasas/metabolismo , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA