Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Microbiol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967744

RESUMEN

Two bacterial strains (XCT-34T and XCT-53) isolated from sediment samples of an artificial freshwater reservoir were analyzed using a polyphasic approach. The two isolates are aerobic, Gram-stain-negative, oxidase-negative, catalase-positive, motile with polar flagella, rod-shaped, and approximately 1.4-3.4 × 0.4-0.9 µm in size. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences showed that the two strains formed a distinct branch within the evolutionary radiation of the genus Pannonibacter, closest to Pannonibacter carbonis Q4.6T (KCTC 52466). Furthermore, lower than threshold average nucleotide identity values (ANI, 85.7-86.4%) and digital DNA-DNA hybridization values (dDDH, 22.3-30.5%) of the two strains compared to the nearest type strains also confirmed that they represented a novel species. Genomic analyses, including annotation of the KEGG pathways, prediction of the secondary metabolism biosynthetic gene clusters and PHI phenotypes, supported functional inference and differentiation of the strains from the closely related taxa. Results of chemotaxonomic and physiological studies revealed that their distinct phenotypic characteristics distinguished them from existing Pannonibacter species. Thus, the two strains are considered to represent a novel species of Pannonibacter, for which the name of Pannonibacter tanglangensis sp. nov. is proposed, with XCT-34T (= KCTC 82332T = GDMCC 1.1947T) as the respective type strain.

2.
Front Hum Neurosci ; 18: 1365838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584852

RESUMEN

Eye-tracking technology brings a different human-computer interaction experience to users because of its intuitive, natural, and hands-free operation characteristics. Avoiding the Midas touch problem and improving the accuracy of interaction are among the main goals of the research and development of eye-control systems. This study reviews the methods and limitations of research on avoiding the Midas touch problem. For typical control clicking operations with low fault tolerance, such as mode switching and state selection in an eye-control system, this study proposes Magilock, a more reliable control triggering method with a high success rate in multi-channel eye-control systems. Magilock adds a control pre-locked mechanism between the two interactive steps of eye-control channel positioning control and other interactive channel triggering controls in the multi-channel eye-control system. This effectively avoids incorrect control triggering caused by multi-channel coordination disorder and gaze-point drift. This study also conducted ergonomic experiments to explore the lock and unlock times of the control pre-locked mechanism in Magilock. Taking into account the experimental data and subjective evaluation of the participants, we recommend setting the lock time and the unlock time of Magilock to 200 ms.

3.
Appl Microbiol Biotechnol ; 108(1): 256, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451307

RESUMEN

Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 µM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 µM for FPP and 48.54 ± 3.89 µM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST's properties and potential for herbicide development. KEY POINTS: • First high-yield transmembrane CrHST protein via E. coli system • Preliminarily identified active cavity composition via activity testing • Determined substrate and inhibitor modes via molecular docking.


Asunto(s)
Chlamydomonas reinhardtii , Herbicidas , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Proteínas de la Membrana , Aminoácidos , Chlamydomonas reinhardtii/genética , Herbicidas/farmacología , Fenilacetatos
4.
ACS Omega ; 9(7): 7609-7620, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405546

RESUMEN

The process of reconstructing an arterial graft is a complex and dynamic process that is subject to the influence of various mechanical factors, including tissue regeneration and blood pressure. The attainment of favorable remodeling outcomes is contingent upon the biocompatibility and biomechanical properties of the arterial graft. A promising strategy involves the emulation of the three-layer structure of the native artery, wherein the inner layer is composed of polycaprolactone (PCL) fibers aligned with blood flow, exhibiting excellent biocompatibility that fosters endothelial cell growth and effectively prevents platelet adhesion. The middle layer, consisting of PCL and polyurethane (PU), offers mechanical support and stability by forming a contractile smooth muscle ring and antiexpansion PU network. The outer layer, composed of PCL fibers with an irregular arrangement, promotes the growth of nerves and pericytes for long-term vascular function. Prioritizing the reconstruction of the inner and outer layers establishes a stable environment for intermediate smooth muscle growth. Our three-layer arterial graft is designed to provide the blood vessel with mechanical support and stability through nondegradable PU, while the incorporation of degradable PCL generates potential spaces for tissue ingrowth, thereby transforming our graft into a living implant.

5.
World J Gastroenterol ; 30(2): 184-195, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38312120

RESUMEN

BACKGROUND: Resistance to clarithromycin (CLA) and levofloxacin (LFX) of Helicobacter pylori (H. pylori) is increasing in severity, and successful eradication is essential. Presently, the eradication success rate has greatly declined, leaving a large number of patients with previous treatment histories. AIM: To investigate secondary resistance rates, explore risk factors for antibiotic resistance, and assess the efficacy of susceptibility-guided therapy. METHODS: We recruited 154 subjects positive for Urea Breath Test who attended The First Affiliated Hospital of China Medical University between July 2022 and April 2023. Participants underwent a string test after an overnight fast. The gastric juice was obtained and transferred to vials containing storage solution. Subsequently, DNA extraction and the specific DNA amplification were performed using quantitative polymerase chain reaction (qPCR). Demographic information was also analyzed as part of the study. Based on these results, the participants were administered susceptibility-guided treatment. Efficacy was compared with that of the empiric treatment group. RESULTS: A total of 132 individuals tested positive for the H. pylori ureA gene by qPCR technique. CLA resistance rate reached a high level of 82.6% (n = 109), LFX resistance rate was 69.7% (n = 92) and dual resistance was 62.1% (n = 82). Gastric symptoms [odds ratio (OR) = 2.782; 95% confidence interval (95%CI): 1.076-7.194; P = 0.035] and rural residence (OR = 5.152; 95%CI: 1.407-18.861; P = 0.013) were independent risk factors for secondary resistance to CLA and LFX, respectively. A total of 102 and 100 individuals received susceptibility-guided therapies and empiric treatment, respectively. The antibiotic susceptibility-guided treatment and empiric treatment groups achieved successful eradication rates of 75.5% (77/102) and 59.0% (59/411) by the intention-to-treat (ITT) analysis and 90.6% (77/85) and 70.2% (59/84) by the per-protocol (PP) analysis, respectively. The eradication rates of these two treatment strategies were significantly different in both ITT (P = 0.001) and PP (P = 0.012) analyses. CONCLUSION: H. pylori presented high secondary resistance rates to CLA and LFX. For patients with previous treatment failures, treatments should be guided by antibiotic susceptibility tests or regional antibiotic resistance profile.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacología , Claritromicina/uso terapéutico , Levofloxacino/uso terapéutico , Helicobacter pylori/genética , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/uso terapéutico , Urea , ADN , Resultado del Tratamiento , Amoxicilina/uso terapéutico , Farmacorresistencia Bacteriana
6.
Biochem Biophys Res Commun ; 703: 149647, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38350211

RESUMEN

The establishment of an osseointegration is crucial for the long-term stability and functionality of implant materials, and early angiogenesis is the key to successful osseointegration. However, the bioinertness of titanium implants affects osseointegration, limiting their clinical application. In this study, inspired by the rapid polarization of macrophages following the phagocytosis of bacteria, we developed bacteroid cerium oxide particles; these particles were composed of CeO2 and had a size similar to that of Bacillus (0.5 µ m). These particles were constructed on the implant surfaces using a hydrothermal method. In vitro experiments demonstrated that the particles effectively decreased the reactive oxygen species (ROS) levels in macrophages (RAW264.7). Furthermore, these particles exerted effects on M1 macrophage polarization, enhanced nitric oxide (NO) secretion to promote vascular regeneration, and facilitated rapid macrophage transition to the M2 phenotype. Subsequently, the particles facilitated human umbilical vein endothelial cell (HUVEC) migration. In vivo studies showed that these particles rapidly stimulated innate immune responses in animal models, leading to enhanced angiogenesis around the implant and improved osseointegration. In summary, the presence of bacteroid cerium oxide particles on the implant surface regulated and accelerated macrophage polarization, thereby enhancing angiogenesis during the immune response and improving peri-implant osseointegration.


Asunto(s)
Cerio , Oseointegración , Animales , Humanos , Macrófagos , Cerio/farmacología , Inmunidad Innata , Neovascularización Patológica , Titanio , Osteogénesis , Propiedades de Superficie
7.
Bioresour Technol ; 394: 130232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141881

RESUMEN

Microalgae, known for rapid growth and lipid richness, hold potential in biofuels and high-value biomolecules. The symbiotic link with bacteria is crucial in large-scale open cultures. This study explores algal-bacterial interactions using a symbiotic model, evaluating acid-resistant Lactic acid bacteria (LAB), stress-resilient Bacillus subtilis and Bacillus licheniformis, and various Escherichia coli strains in the Aurantiochytrium sp. SW1 system. It was observed that E. coli SUC significantly enhanced the growth and lipid production of Aurantiochytrium sp. SW1 by increasing enzyme activity (NAD-IDH, NAD-ME, G6PDH) while maintaining sustained succinic acid release. Optimal co-culture conditions included temperature 28 °C, a 1:10 algae-to-bacteria ratio, and pH 8. Under these conditions, Aurantiochytrium sp. SW1 biomass increased 3.17-fold to 27.83 g/L, and total lipid content increased 2.63-fold to 4.87 g/L. These findings have implications for more efficient microalgal lipid production and large-scale cultivation.


Asunto(s)
Microalgas , Escherichia coli , Ácido Succínico , Biomasa , Simbiosis , NAD , Lípidos , Biocombustibles
8.
J Agric Food Chem ; 71(49): 19396-19407, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38035573

RESUMEN

Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Fungicidas Industriales , Herbicidas , Fungicidas Industriales/farmacología , 4-Hidroxifenilpiruvato Dioxigenasa/química , Herbicidas/química , Antifúngicos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Estructura-Actividad
9.
J Neurochem ; 167(3): 461-484, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37788328

RESUMEN

Parkinson's disease (PD) is an age-related chronic neurological disorder, mainly characterized by the pathological feature of α-synuclein (α-syn) aggregation, with the exact disease pathogenesis unclear. During the onset and progression of PD, synaptic dysfunction, including dysregulation of axonal transport, impaired exocytosis, and endocytosis are identified as crucial events of PD pathogenesis. It has been reported that over-expression of α-syn impairs clathrin-mediated endocytosis (CME) in the synapses. However, the underlying mechanisms still needs to be explored. In this study, we investigated the molecular events underlying the synaptic dysfunction caused by over-expression of wild-type human α-syn and its mutant form, involving series of proteins participating in CME. We found that excessive human α-syn causes impaired fission and uncoating of clathrin-coated vesicles during synaptic vesicle recycling, leading to reduced clustering of synaptic vesicles near the active zone and increased size of plasma membrane and number of endocytic intermediates. Furthermore, over-expressed human α-syn induced changes of CME-associated proteins, among which synaptojanin1 (SYNJ1) showed significant reduction in various brain regions. Over-expression of SYNJ1 in primary hippocampal neurons from α-syn transgenic mice recovered the synaptic vesicle density, clustering and endocytosis. Using fluorescence-conjugated transferrin, we demonstrated that SYNJ1 re-boosted the CME activity by restoring the phosphatidylinositol-4,5-bisphosphate homeostasis. Our data suggested that over-expression of α-syn disrupts synaptic function through interfering with vesicle recycling, which could be alleviated by re-availing of SYNJ1. Our study unrevealed a molecular mechanism of the synaptic dysfunction in PD pathogenesis and provided a potential therapeutic target for treating PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Sinapsis/metabolismo
10.
Shanghai Kou Qiang Yi Xue ; 32(3): 298-301, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37803987

RESUMEN

PURPOSE: To study the preemptive analgesic effect of dexketoprofen tromethamine in extraction of impacted teeth. METHODS: Twenty patients with bilateral mandibular impacted teeth were selected, and were randomly divided into dexketoprofen tromethamine group(experimental group) and placebo group(control group). The pain scores of patients at 0.5, 2, 4, 8, 12, and 24 hours after tooth extraction were counted by numeric rating scale(NRS), and the total dosage of emergent analgesic drugs used in 24 hours was recorded. COX analysis method was used to compare the interval time and the number of cases of first application of emergent analgesic drugs after two operations, and the survival curve was drawn. SPSS 20.0 software package was used for data analysis. RESULTS: The NRS scores of postoperative pain in the experimental group were significantly lower than those in the control group at 2, 4, 8 and 12 hours after operation (P<0.05). The dose of emergent analgesics used in the experimental group for 24 h was significantly lower than that in the control group (P<0.05). Survival curve showed that the interval time between the first application of analgesics in the experimental group was significantly longer than that in the control group(P<0.05). CONCLUSIONS: Dexketoprofen tromethamine can achieve obvious analgesic effect within 12 hours, but the analgesic effect is not obvious after 12 hours.


Asunto(s)
Analgesia , Diente Impactado , Humanos , Antiinflamatorios no Esteroideos/efectos adversos , Trometamina/efectos adversos , Diente Impactado/cirugía , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Método Doble Ciego , Analgesia/métodos
11.
Front Immunol ; 14: 1211612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662924

RESUMEN

Background: COVID-19 could develop severe respiratory symptoms in certain infected patients, especially in the patients with immune disorders. Gut microbiome and plasma metabolome act important immunological modulators in the human body and could contribute to the immune responses impacting the progression of COVID-19. However, the causal relationship between specific intestinal bacteria, metabolites and severe COVID-19 remains not clear. Methods: Based on two-sample Mendelian randomization (MR) framework, the causal effects of 131 intestinal taxa and 452 plasma metabolites on severe COVID-19 were evaluated. Single nucleotide polymorphisms (SNPs) strongly associated with the abundance of intestinal taxa and the concentration of plasma metabolites had been utilized as the instrument variables to infer whether they were causal factors of severe COVID-19. In addition, mediation analysis was conducted to find the potential association between the taxon and metabolite, and further colocalization analysis had been performed to validate the causal relationships. Results: MR analysis identified 13 taxa and 53 metabolites, which were significantly associated with severe COVID-19 as causal factors. Mediation analysis revealed 11 mediated relationships. Myo-inositol, 2-stearoylglycerophosphocholine, and alpha-glutamyltyrosine, potentially contributed to the association of Howardella and Ruminiclostridium 6 with severe COVID-19, respectively. Butyrivibrio and Ruminococcus gnavus could mediate the association of myo-inositol and N-acetylalanine, respectively. In addition, Ruminococcus torques abundance was colocalized with severe COVID-19 (PP.H4 = 0.77) and the colon expression of permeability related protein RASIP1 (PP.H4 = 0.95). Conclusions: Our study highlights the potential causal relationships between gut microbiome, plasma metabolome and severe COVID-19, which potentially serve as clinical biomarkers for risk stratification and prognostication and benefit the mechanism mechanistic investigation of severe COVID-19.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Humanos , Análisis de la Aleatorización Mendeliana , Análisis de Mediación , Metaboloma
12.
Zool Res ; 44(5): 882-893, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37545418

RESUMEN

Accurately recognizing facial expressions is essential for effective social interactions. Non-human primates (NHPs) are widely used in the study of the neural mechanisms underpinning facial expression processing, yet it remains unclear how well monkeys can recognize the facial expressions of other species such as humans. In this study, we systematically investigated how monkeys process the facial expressions of conspecifics and humans using eye-tracking technology and sophisticated behavioral tasks, namely the temporal discrimination task (TDT) and face scan task (FST). We found that monkeys showed prolonged subjective time perception in response to Negative facial expressions in monkeys while showing longer reaction time to Negative facial expressions in humans. Monkey faces also reliably induced divergent pupil contraction in response to different expressions, while human faces and scrambled monkey faces did not. Furthermore, viewing patterns in the FST indicated that monkeys only showed bias toward emotional expressions upon observing monkey faces. Finally, masking the eye region marginally decreased the viewing duration for monkey faces but not for human faces. By probing facial expression processing in monkeys, our study demonstrates that monkeys are more sensitive to the facial expressions of conspecifics than those of humans, thus shedding new light on inter-species communication through facial expressions between NHPs and humans.


Asunto(s)
Expresión Facial , Percepción del Tiempo , Animales , Tecnología de Seguimiento Ocular , Haplorrinos
13.
Food Chem ; 428: 136733, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429243

RESUMEN

The quality control of Baijiu is necessary including ethanol content. In this work, red-emitted carbon quantum dots based on p-phenylenediamine (PPD-CQDs) were fabricated for accurate determination of ethanol in Baijiu. The good linear response of PPD-CQDs to ethanol-water solution (E-Ws; 20-80 vol%) offered the potential for ethanol determination in practice. However, further application of this procedure to Baijiu resulted in a certain deviation. After excluding interference from most of the ingredients involved, a simple pH correction on Baijiu made application of the process practicable. The red-emission of PPD-CQDs supported analysis of Baijiu with different flavors and ethanol monitoring. Therefore, a quick-response fluorescence method was established for Baijiu ethanol determination; this method can be applied to the many varieties of Chinese Baijiu available and also has potential for use in other alcoholic beverages.


Asunto(s)
Etanol , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Fluorescencia , Concentración de Iones de Hidrógeno
14.
Artículo en Inglés | MEDLINE | ID: mdl-37042839

RESUMEN

Six aerobic or facultative anaerobic, motile, Gram-stain-positive, catalase-positive and oxidase-negative strains (zg-Y453T, zg-Y324, zg-Y462T, zg-Y411, zg-Y809T and zg-Y786) were isolated from different faecal samples of Marmota himalayana from the Qinghai-Tibet Plateau. Pale yellow, round, raised and moist colonies appeared 48 h after incubation at 28 °C on brain-heart infusion plates supplemented with 5 % defibrinated sheep blood. According to the 16S rRNA gene sequence alignment, two strain pairs (zg-Y453T/zg-Y324 and zg-Y462T/zg-Y411) shared the highest similarities to Arthrobacter luteolus (99.5 and 99.2 %), and the other one (zg-Y809T/zg-Y786) to Arthrobacter citreus (99.5 %). Results of phylogenetic analysis based on the 16S rRNA gene and genome sequences showed that these six strains represented three separate species within the genus Arthrobacter. The average nucleotide identity and digital DNA-DNA hybridization values between the three novel type strains (zg-Y453T/zg-Y462T/zg-Y809T) and other known species in this genus were all below respective thresholds (70.2-81.5/19.6-24.2 %, 70.6-81.8/19.8-25.0 %, and 70.4-88.2/19.9-35.3 %). Although phylogenetically related, there were obvious chemotaxonomic and phenotypic differences: strain pair zg-Y462T/zg-Y411 had anteiso-C15 : 0 as the only major fatty acid; the three novel species had different dominant quinones, MK-8(H2) in strains zg-Y462T/zg-Y809T (74.8/81.1 %) and MK-8(H2)/MK-9(H2) (43.1/53.0 %) in zg-Y453T; similarly, the ability to reduce nitrate in strains zg-Y453T and zg-Y462T could differentiate them from zg-Y809T. All strains had diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol, but differed slightly in the types of unidentified glycolipids, phospholipids and lipids. Based on the results of these polyphasic taxonomic analyses, three novel species within the genus Arthrobacter are proposed, namely Arthrobacter caoxuetaonis sp. nov. (type strain, zg-Y453T=GDMCC 1.2809T=JCM 35173T), Arthrobacter zhangbolii sp. nov. (type strain, zg-Y462T=GDMCC 1.2880T=JCM 35170T) and Arthrobacter gengyunqii sp. nov. (type strain, zg-Y809T=GDMCC 1.2808T=JCM 35168T).


Asunto(s)
Arthrobacter , Animales , Ovinos , Tibet , Ácidos Grasos/química , Marmota , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Vitamina K 2 , Heces
15.
Oncol Rep ; 49(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929422

RESUMEN

Colorectal cancer (CRC) is an aggressive tumor, whose development is considered to be modulated by certain long non­coding RNAs (lncRNAs). Therefore, the aim of the present study was to investigate the regulatory mechanism of lncRNA NONHSAG028908.3 on CRC. Data from The Cancer Genome Atlas (TCGA) database revealed that NONHSAG028908.3 was increased in CRC tissues compared with normal tissues (P<0.001). The results of reverse transcription­quantitative PCR indicated that NONHSAG028908.3 was upregulated in four types of CRC cells compared with that in NCM460, a normal colorectal cell line. MTT, BrdU, and flow cytometric assays were applied to evaluate CRC cell growth. The migratory and invasive abilities of CRC cells were detected using wound healing and Transwell assays. Silencing of NONHSAG028908.3 inhibited proliferation, migration, and invasion of CRC cells. A dual­luciferase reporter assay demonstrated that NONHSAG028908.3 served as a sponge to combine with microRNA (miR)­34a­5p. MiR­34a­5p suppressed the aggressiveness of CRC cells. The effects induced by NONHSAG028908.3 knockdown were partly reversed by inhibition of miR­34a­5p. Furthermore, miR­34a­5p, a target of NONHSAG028908.3, modulated aldolase, fructose­bisphosphate A (ALDOA) expression in a negative feedback manner. Suppression of NONHSAG028908.3 notably decreased ALDOA expression, which was rescued via silencing of miR­34a­5p. Moreover, suppression of ALDOA revealed the inhibitory action on CRC cell growth and migration. In summary, the data of the present study indicate that NONHSAG028908.3 may positively regulate ALDOA via sponging miR­34a­5p, thereby promoting malignant activities in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Fructosa-Bifosfato Aldolasa/genética
16.
Macromol Biosci ; 23(4): e2200436, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617598

RESUMEN

The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.


Asunto(s)
Oseointegración , Osteogénesis , Biomimética , Polietilenglicoles/farmacología , Polietilenglicoles/química , Cetonas/farmacología , Cetonas/química , Durapatita/farmacología , Durapatita/química , Colágeno , Propiedades de Superficie
17.
J Agric Food Chem ; 71(2): 1170-1177, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599124

RESUMEN

High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Productos Biológicos , Herbicidas , Estructura Molecular , Relación Estructura-Actividad , 4-Hidroxifenilpiruvato Dioxigenasa/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Herbicidas/química
18.
Biomed Mater ; 18(2)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36720171

RESUMEN

Nanotopography can promote osseointegration, but how bone marrow mesenchymal stem cells (BMMSCs) respond to this physical stimulus is unclear. Here, we found that early exposure of BMMSCs to nanotopography (6 h) caused mitochondrial fission rather than fusion, which was necessary for osseointegration. We analyzed the changes in mitochondrial morphology and function of BMMSCs located on the surfaces of NT100 (100 nm nanotubes) and ST (smooth) by super-resolution microscopy and other techniques. Then, we found that both ST and NT100 caused a significant increase in mitochondrial fission early on, but NT100 caused mitochondrial fission much earlier than those on ST. In addition, the mitochondrial functional statuses were good at the 6 h time point, this is at odds with the conventional wisdom that fusion is good. This fission phenomenon adequately protected mitochondrial membrane potential (MMP) and respiration and reduced reactive oxygen species. Interestingly, the MMP and oxygen consumption rate of BMMSCs were reduced when mitochondrial fission was inhibited by Mdivi-1(Inhibition of dynamin-related protein 1 fission) in the early stage. In addition, the effect on osseointegration was significantly worse, and this effect did not improve with time. Taken together, the findings indicate that early mitochondrial fission plays an important role in nanotopography-mediated promotion of osseointegration, which is of great significance to the surface structure design of biomaterials.


Asunto(s)
Células Madre Mesenquimatosas , Nanotubos , Oseointegración , Dinámicas Mitocondriales
19.
Anal Chim Acta ; 1243: 340814, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36697177

RESUMEN

As a representative flavonoid, morin exhibits multi-biological activities, but its abuse endangers human health. Developing advanced technology for morin determination is urgently needed. In this study, a dual-responsive approach was reported for morin based on the complexing of carbon quantum dots (CQDs) and polyethyleneimine (PEI). The CQDs were fabricated via an improved hydrothermal method employing tyrosine and malic acid. Binding with PEI induced an 8-fold emission enhancement and a slight red-shift to 445 nm of CQDs because of the complexing of PEI and CQDs. Further morin introduction led to the blue emission (445 nm) quenching of CQDs-PEI and a yellow emission (560 nm) generation, which contributed a ratiometric fluorescence approach for morin determination between 2.0 and 32 µM, with a limit of detection (LOD) of 45 nM. Meanwhile, under sunlight the color of CQDs-PEI became yellow upon morin addition, which developed a colorimetric method for morin determination in a wide range between 2.0 and 100 µM (LOD = 69 nM). The developed dual-responsive method either displayed accurate results for morin in diluted human and bovine serum, being potential for actual sample analysis. Finally, a visual detection based on the smartphone was constructed and applied for the real-time determination of morin.


Asunto(s)
Puntos Cuánticos , Humanos , Carbono , Colorimetría/métodos , Polietileneimina , Límite de Detección , Colorantes Fluorescentes
20.
J Pediatr Nurs ; 68: e8-e15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36402600

RESUMEN

PURPOSE: Music and animation are the most common and affordable distraction strategies to reduce preoperative anxiety in children; however, their effects are inconsistent. This study aimed to examine the effectiveness of two distraction strategies (music or animation) in reducing preoperative anxiety in children. DESIGN AND METHODS: In this randomized controlled trial, 183 children who underwent surgery were divided into music, animation, and control groups using a single-blind block randomized design. Children in the control group underwent routine preoperative visits. Meanwhile, the children in the intervention groups could choose their favorite music and cartoons as intervention content. Study outcomes included anxiety levels, degree of cooperation, heart rate, and blood pressure. Data were collected before entering the operating room, entering the operating room, and before the induction of anesthesia; only the degree of cooperation was collected before the induction of anesthesia. RESULTS: Only animation significantly reduced preoperative anxiety in the children (P < 0.05) upon entering the operating room. Both music and animation reduced the level of preoperative anxiety before induction of anesthesia; however, there was no significant difference between them (P > 0.05). The induction compliance score was significantly lower in the music and animation groups than in the control group (P < 0.05). Heart rates differed significantly between the three groups from before entering the operating room to before induction of anesthesia. Children in the control group had the highest systolic blood pressure upon entering the operating room (P < 0.05). CONCLUSIONS: Music and animation strategies can significantly reduce preoperative anxiety in children and improve surgical cooperation during anesthesia induction. TRIAL REGISTRATION: Clinical. TRIALS: gov NCT05285995.


Asunto(s)
Música , Cuidados Preoperatorios , Niño , Humanos , Método Simple Ciego , Ansiedad/prevención & control , Anestesia General
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA