Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Epigenetics ; 16(1): 51, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576048

RESUMEN

BACKGROUND: The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT: Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.


Asunto(s)
Selenio , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Selenio/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Metilación de ADN , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas/genética
2.
Biometals ; 28(5): 879-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26209160

RESUMEN

Lanthanide elements have been documented to possess various biologic effects, and their compounds have been studied intensely for their anti-cancer potential. However, the underlying mechanisms remain largely unknown. In the present study, we propose that the levels of proliferation and apoptosis related microRNAs (miRNAs), let-7a and miR-34a, which mediate the apoptosis of cervical cancer cells, can be affected by the lanthanum ion. Our data showed that LaCl3 inhibited the proliferation and induced the apoptosis of cervical cancer cells both in vivo and in vitro by regulating let-7a, miR-34a and their downstream genes. This study provides novel evidence demonstrating that the anticancer mechanism of lanthanum chloride is partially attributed to miRNAs regulation and establishes an experimental basis for the clinical application of lanthanum chloride as an anti-cancer drug.


Asunto(s)
Lantano/administración & dosificación , MicroARNs/biosíntesis , Neoplasias del Cuello Uterino/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA