Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(31): e2400938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885493

RESUMEN

It remains a great challenge to achieve strong and reversible hydrogel adhesion. Hydrogel adhesives also suffer from poor environmental stability due to dehydration. To overcome these problems, here reversible adhesive gels are designed using a new switching mechanism and new solvent. For the first time, the study observes UCST (upper critical solution temperature)-type thermosensitive behaviors of poly(benzyl acrylate) (PBnA) polymer and gel in menthol:thymol deep eutectic solvents (DESs). The temperature-induced phase transition allows adjusting cohesive force, and hence adhesion strength of PBnA gels by temperature. To further improve the mechanical and adhesion properties, a peptide crosslinker is used to allow energy dissipation when deforming. The resulting eutectogel exhibits thermal reversible adhesion with a high switching ratio of 14.0. The adhesion strength at attachment state reaches 0.627 MPa, which is much higher than most reversible adhesive hydrogels reported before. The low vapor pressure of DES endows the gel excellent environmental stability. More importantly, the gel can be repeatedly switched between attachment and detachment states. The strong and reversible gel adhesive is successfully used to design soft gripper for the transport of heavy cargos and climbing robot capable of moving on vertical and inverted surface in a manner similar to gecko.

3.
Anal Bioanal Chem ; 415(9): 1699-1707, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781448

RESUMEN

Liquid biopsies have significance for early colon cancer screening and improving patient survival. Recently, several researchers have applied surface-enhanced Raman spectroscopy (SERS) for the label-free and non-invasive detection of serum. Most of these studies performed the assay using a mixture of noble metal nanoparticles (NMNPs) with serum. However, SERS analysis of serum remains a challenge in terms of reproducibility and stability, as NMNPs tend to aggregate when mixed with serum, resulting in a non-uniform distribution of hot spots. Here, we report on the non-invasive identification of colon cancer (CC) using an internal standard (IS)-calibrated label-free serum SERS assay in combination with machine learning. Serum SERS spectra of 50 CC patients and 50 health volunteers have been obtained using silver nanoparticle (Ag NP) colloid and mercaptopropionic acid-modified Ag NPs (Ag NPs-MPA) as the SERS substrates. Decision tree (DT), random forest (RF), and principal component and linear discriminant analysis (PCA-LDA) algorithms were utilized to establish the diagnosis model for SERS spectra data classifying. The results show that the RF model provides a high diagnostic accuracy compared to PCA-LDA. Following calibration with IS molecules, high diagnostic accuracy of over 90% and 100% specificity can be achieved with DT, RF, and PCA-LDA algorithms to differentiate between cancer and normal groups. The results from this exploratory work demonstrate that serum SERS detection combined with multivariate statistical methods and IS calibration has great potential for the non-invasive and label-free detection of CC.


Asunto(s)
Neoplasias del Colon , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Calibración , Plata/química , Espectrometría Raman/métodos , Neoplasias del Colon/diagnóstico , Análisis de Componente Principal
4.
Natl Sci Rev ; 8(10): nwaa211, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34858599

RESUMEN

Interferometry, a key technique in modern precision measurements, has been used for length measurement in engineering metrology and astronomy. An analogous time-domain interferometric technique would represent a significant complement to spatial domain applications and require the manipulation of interference on extreme time and energy scales. Here, we report an all-optical interferometer using laser-driven high order harmonics as attosecond temporal slits. By controlling the phase of the temporal slits with an external field, a time domain interferometer that preserves both attosecond temporal resolution and hundreds of meV energy resolution is implemented. We apply this exceptional temporal resolution to reconstruct the waveform of an arbitrarily polarized optical pulse, and utilize the provided energy resolution to interrogate the abnormal character of the transition dipole near the Cooper minimum in argon. This novel attosecond interferometry paves the way for high precision measurements in the time-energy domain using all-optical approaches.

5.
Opt Express ; 29(7): 11342-11352, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820248

RESUMEN

Extreme ultraviolet (EUV) transient absorption spectrum of helium dressed by a moderately intense infrared laser pulse is investigated. Strategies for correct retrieval of the time-dependent quasi-energies of helium with excitation energies covering both singly and doubly excited states are proposed. For long-lived singly excited states, the profound hyperbolic structures due to long lasting dipole can be diminished by convoluting the transient absorption spectrogram with a spectral window, allowing the time-dependent quasi-energies close to 1s2p resonance to be correctly mapped out. For short-lived doubly excited states near 2s2p resonance, the radiation dipole decays rapidly due to autoionization and the transient absorption spectrogram already recovers the main structure of quasi-energies without the convolution operation. The quantum simulation indicates that the convolution operation controls the effective decay speed of the dipole moment, which effectively builds up an instant probe that is essential for mapping time dependent quasi-energies of laser dressed systems.

6.
Opt Express ; 29(2): 2798-2808, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726469

RESUMEN

Ultrafast wave-mixing spectroscopies involving extreme ultraviolet (EUV) attosecond pulses provide unprecedented insight into electronic dynamics. Here, we proposed a versatile lifetime-detection method for doubly excited states with odd or even parities by mixing an attosecond EUV pulse with two few-cycle near infrared (NIR) pulses in atomic helium under a noncollinear geometry. By properly choosing the time order of the pulse sequence, the spatially resolved nonlinear signals carry significant information of the decaying dynamics of excited states, which can be utilized to retrieve the lifetimes of states with different parities in a single measurement. The validity and robustness of the method has been verified by numerical simulations based on a few-level model of helium including the spatial distribution of atoms. The accuracy of the lifetime measurement method is better than a few hundred attoseconds. It provides a powerful tool for probing decaying dynamics of the electronic wave packet with superb resolution.

7.
Opt Lett ; 46(3): 548-551, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528406

RESUMEN

The phase-matching bandwidth of nonlinear crystal is of great significance in ultrashort laser pulse characterization. In order to satisfy the phase-matching bandwidth, ultra-thin nonlinear crystals are generally required. However, the significantly reduced conversion efficiency, as well as the machining difficulties, limits its applications. Here, we show that sufficient spectrum bandwidth response can be achieved for a thick crystal when the phase-matching wavelength is tuned outside of the spectral window of the measured pulse. By applying this phenomenon to a single-shot second-harmonic generation frequency resolved optical gating (SHG-FROG) device, we successfully characterized a few-cycle pulse using a 150µmß-barium borate (BBO) crystal. The accuracy of the method was verified by comparing the conventional pulse retrieving approach with a 5µm BBO crystal, which has a sufficient phase-matching bandwidth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA