Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34352, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114032

RESUMEN

The bile acids (BA) in the intestine promote inflammation by interacting with immune cells, playing a crucial role in the progression of UC, but the specific mechanism between the two remains elusive. This study aims to explore the relationship between BAMand UC inflammation and determine its potential mechanisms.Firstly, we employed a hybrid approach using Lasso regression and support vector machine (SVM) feature selection in bioinformatics to identify genes linked to UC and BAM. The relationship between these genes and immune infiltration was explored, along with their correlation with immune factors in the Tumor-Immune System Interaction Database (TISIDB) database. Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis was then used to predict signaling pathways associated with key genes in UC. Single-cell data from the GSE13464 dataset was also analyzed. Finally, Five differentially expressed genes (DEGs) related to BAM (APOA1, AMACR, PEX19, CH25H, and AQP9) were significantly upregulated/downregulated in UC immune cells. The expression of important genes in UC tissue was confirmed in the experimental validation section and AQP9, which showed significant differential expression, was chosen for further validation. The results showed that the AQP9 gene may regulate the IFN - γ/JAK signaling axis, thereby promoting CD8+T cell activation. This research has greatly advanced our comprehension of the pathogenesis and underlying mechanism of BAM in immune cells linked to UC.

2.
Neurosci Lett ; 837: 137919, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39089611

RESUMEN

The sympathetic nervous system is crucial for the regulation of visceral organ function. For instance, the activation of the sympathetic nervous system promotes glycogenolysis in the liver and modulates glucagon and insulin release from the pancreas, thereby raising blood glucose levels. A decrease in sympathetic nerve activity has the opposite effect. Although such acute effects of sympathetic activity changes have been studied, their long-term outcomes have not been previously examined. In this study, we removed the celiac/superior mesenteric ganglia, where sympathetic postganglionic neurons innervating pancreas and liver locate, and examined its effects on glucose homeostasis and islet size several weeks after surgery. Consistent with the reduction in gluconeogenesis, glucose tolerance improved in gangliectomized mice. However, contrary to our expectation that the inhibition of pancreatic function by sympathetic nerves would be relieved with gangliectomy, insulin or C-peptide release did not increase. Examining the size distribution of pancreatic islets, we identified that the gangliectomy led to a size reduction in large islets and a decrease in the proportion of α and ß cells within each islet, as analyzed by immunostaining for insulin and glucagon, respectively. These results indicate that the absence of sympathetic nerve activity reduces the size of the pancreatic islets within a few weeks to reinstate the homeostatic mechanism of blood glucose levels.


Asunto(s)
Ganglios Simpáticos , Glucagón , Islotes Pancreáticos , Animales , Islotes Pancreáticos/metabolismo , Ganglios Simpáticos/metabolismo , Glucagón/metabolismo , Masculino , Glucemia/metabolismo , Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones , Tamaño de los Órganos , Prueba de Tolerancia a la Glucosa , Ganglionectomía/métodos
3.
Water Sci Technol ; 89(12): 3309-3324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39150426

RESUMEN

Polyacrylamide (PAM) in environmental water has become a major problem in water pollution management due to its high molecular mass, high viscosity and non-absorption by soil. CoFe2O4 with strong magnetic properties was prepared by solvent-thermal synthesis method and used as the catalyst for the removal on PAM in heterogeneous Electro-Fenton (EF) system. It showed that the removal efficiency of PAM by the heterogeneous EF system using CoFe2O4 catalyst was 92.01% at pH 3 after 120 min. Further studies indicated that ·OH was the most significant active species for the removal of PAM, and the contribution of ·O2- and SO4·- for the removal of PAM was less than 15%. The reusability test and XRD, XPS, FTIR analyses proved that the catalyst had good stability. After a repeated use for five times, the catalyst still had a high PAM removal rate and stable structure. The valence distribution and functional groups of the phase components of the catalyst did not change significantly before and after the reaction. The possible mechanism of catalyst activation of H2O2 was deduced by mechanism investigation. The CoFe2O4 is an efficient and promising catalyst for the removal of PAM wastewater.


Asunto(s)
Resinas Acrílicas , Cobalto , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Resinas Acrílicas/química , Cobalto/química , Catálisis , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
4.
Microbiol Res ; 287: 127859, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098095

RESUMEN

Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.


Asunto(s)
Bacillus , Proteínas Bacterianas , Biopelículas , Regulación Bacteriana de la Expresión Génica , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus/genética , Bacillus/fisiología , Bacillus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Polisacáridos Bacterianos/metabolismo , Organismos Acuáticos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
Cytokine ; 182: 156705, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053079

RESUMEN

Gout is an autoinflammatory disease characterized by the deposition of monosodium urate crystals in or around the joints, primarily manifesting as inflammatory arthritis that recurs and resolves spontaneously. Interleukin-6 (IL-6) is a versatile cytokine with both anti-inflammatory and pro-inflammatory capabilities, linked to a variety of inflammatory diseases such as gouty arthritis, rheumatoid arthritis, inflammatory bowel disease, vasculitis, and several types of cancer. The rapid production of IL-6 during infections and tissue damage aids in host defense. However, excessive synthesis of IL-6 and dysregulation of its receptor signaling (IL-6R) might contribute to the pathology of diseases. Recent advancements in clinical and basic research, along with developments in animal models, have established the significant role of IL-6 and its receptors in the pathogenesis of gout, although the precise mechanisms remain to be fully elucidated. This review discusses the role of IL-6 and its receptors in gout progression and examines contemporary research on modulating IL-6 and its signaling pathways for treatment. It aims to provide insights into the pathogenesis of gout and to advance the development of targeted therapies for gout-related inflammation.

6.
Neural Regen Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993125

RESUMEN

ABSTRACT: The cGAS-STING pathway plays an important role In Ischemla/reperfuslon Injury In the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia/reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia/reperfusion injury. We further analyze the value of cGAS- STING pathway inhibitors in the treatment of cerebral ischemia/reperfusion injury and conclude that the pathway can regulate cerebral ischemia/reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia/reperfusion injury.

7.
Org Lett ; 26(29): 6142-6147, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38995672

RESUMEN

Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.

8.
ChemMedChem ; : e202400349, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965060

RESUMEN

Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses  serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.

9.
Int J Biol Macromol ; 276(Pt 2): 133988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032887

RESUMEN

Ultraviolet B (UVB) radiation accelerates the aging process of skin cells by triggering oxidative stress and inflammatory responses. The aim of this study was to investigate the mechanism of action of sRNAs and protein molecules in the regenerative extracellular vesicles of Lactobacillus plantarum against the UVB-induced photoaging process of human keratinocytes. The extracellular vesicles regenerated by Lactobacillus plantarum were isolated and purified to identify sRNAs and protein components. Human keratinocytes were treated with UVB radiation to simulate the photoaging model. The effects of different concentrations of vesicle extract on cell survival rate, oxidative stress index and inflammatory marker expression were evaluated in control group and treatment group. The results showed that the regenerated extracellular vesicles of L. plantarum significantly improved the survival rate of keratinocytes after UVB radiation, and delayed the aging process of skin cells by reducing oxidative stress and inhibiting inflammatory response.


Asunto(s)
Vesículas Extracelulares , Queratinocitos , Lactobacillus plantarum , Envejecimiento de la Piel , Rayos Ultravioleta , Lactobacillus plantarum/química , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Vesículas Extracelulares/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ARN Pequeño no Traducido
10.
J Cosmet Dermatol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923657

RESUMEN

BACKGROUND: Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM: This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS: The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS: A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION: A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.

11.
RSC Adv ; 14(21): 15008-15020, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38720974

RESUMEN

Enamel white spot lesions (WSLs) are usually caused by the dissolution of minerals (mainly calcium and phosphate) on the tooth surface due to the acidic environment in the oral cavity. Without timely intervention, WSLs may lead to white spots or a sense of transparency on the tooth surface, and even the formation of dental caries (tooth decay) in severe cases. The key to preventing and treating WSLs is inhibiting the activity of acid-producing bacteria and promoting the remineralization of demineralized enamel. In this study, the network structure formed by sodium tripolyphosphate (TPP) cross-linked chitosan was used to stabilize calcium phosphate, and the multifunctional nanocomposite was constructed by integrating antibacterial components of traditional Chinese medicine, honokiol nanoparticles (HK-NPs) and sodium fluoride to achieve the purpose of resisting cariogenic bacteria and remineralizing with sustained release of calcium and phosphate ions. Notably, we enhanced the remineralization effect of nanocomposites with the help of functional nanocoatings inspired by the mussel biomimetic coating. The experimental results show that the synergistic remineralization effect of nanocomposite and nanocoating is better than that of a single strategy. This multi-prong treatment strategy provides the theoretical and experimental basis for the clinical prevention and treatment of WSLs.

12.
Front Med (Lausanne) ; 11: 1390878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737762

RESUMEN

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

13.
Food Chem ; 451: 139377, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703722

RESUMEN

Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.


Asunto(s)
Bacterias , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fermentación , Metabolómica , Temperatura , Alimentos Fermentados/análisis , Alimentos Fermentados/microbiología
14.
Endocrine ; 85(1): 313-320, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760615

RESUMEN

OBJECTIVE: Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab. METHODS: The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals. PARTICIPANTS: This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting. RESULTS: Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients. CONCLUSIONS: Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Anticuerpos Monoclonales Humanizados , Bases de Datos Factuales , Humanos , Masculino , Femenino , Estudios Retrospectivos , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Anticuerpos Monoclonales Humanizados/efectos adversos , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto , Anciano , Adulto Joven , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38801182

RESUMEN

INTRODUCTION: Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. METHODS: In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. RESULTS: Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. DISCUSSION: Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.

16.
Environ Res ; 257: 119240, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821462

RESUMEN

BACKGROUND: Prolonged exposure to air pollution has been linked to adverse respiratory health, yet the evidence concerning its association with chronic obstructive pulmonary disease (COPD) is inconsistent. The evidence of a greenness effect on chronic respiratory diseases is limited. OBJECTIVE: This study aimed to investigate the association between long-term exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (as measured by the normalized difference vegetation index - NDVI) and incidence of self-reported chronic bronchitis or COPD (CB/COPD). METHODS: We analyzed data from 5355 adults from 7 centers participating in the Respiratory Health in Northern Europe (RHINE) study. Mean exposures to air pollution and greenness were assessed at available residential addresses in 1990, 2000 and 2010 using air dispersion models and satellite data, respectively. Poisson regression with log person-time as an offset was employed to analyze the association between air pollution, greenness, and CB/COPD incidence, adjusting for confounders. RESULTS: Overall, there were 328 incident cases of CB/COPD during 2010-2023. Despite wide statistical uncertainty, we found a trend for a positive association between NO2 exposure and CB/COPD incidence, with incidence rate ratios (IRRs) per 10 µg/m³ difference ranging between 1.13 (95% CI: 0.90-1.41) in 1990 and 1.18 (95% CI: 0.96-1.45) in 2000. O3 showed a tendency for inverse association with CB/COPD incidence (IRR from 0.84 (95% CI: 0.66-1.07) in 2000 to 0.88 (95% CI: 0.69-1.14) in 2010. No consistent association was found between PM, BC and greenness with CB/COPD incidence across different exposure time windows. CONCLUSION: Consistent with prior research, our study suggests that individuals exposed to higher concentrations of NO2 may face an elevated risk of developing COPD, although evidence remains inconclusive. Greenness was not associated with CB/COPD incidence, while O3 showed a tendency for an inverse association with the outcome.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Humanos , Incidencia , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Femenino , Masculino , Europa (Continente)/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Persona de Mediana Edad , Anciano , Contaminantes Atmosféricos/análisis , Adulto , Material Particulado/análisis , Ozono/análisis , Ozono/efectos adversos , Dióxido de Nitrógeno/análisis
17.
ACS Appl Mater Interfaces ; 16(22): 29087-29097, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788159

RESUMEN

Electrospun microfibers, designed to emulate the extracellular matrix (ECM), play a crucial role in regulating the cellular microenvironment for tissue repair. Understanding their mechanical influence and inherent biological interactions at the ECM interface, however, remains a complex challenge. This study delves into the role of mechanical cues in tissue repair by fabricating Col/PLCL microfibers with varying chemical compositions and alignments that mimic the structure of the ECM. Furthermore, we optimized these microfibers to create the Col/PLCL@PDO aligned suture, with a specific emphasis on mechanical tension in tissue repair. The result reveals that within fibers of identical chemical composition, fibroblast proliferation is more pronounced in aligned fibers than in unaligned ones. Moreover, cells on aligned fibers exhibit an increased aspect ratio. In vivo experiments demonstrated that as the tension increased to a certain level, cell proliferation augmented, cells assumed more elongated morphologies with distinct protrusions, and there was an elevated secretion of collagen III and tension suture, facilitating soft tissue repair. This research illuminates the structural and mechanical dynamics of electrospun fiber scaffolds; it will provide crucial insights for the advancement of precise and controllable tissue engineering materials.


Asunto(s)
Materiales Biomiméticos , Proliferación Celular , Suturas , Ingeniería de Tejidos , Andamios del Tejido , Animales , Proliferación Celular/efectos de los fármacos , Materiales Biomiméticos/química , Andamios del Tejido/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Ratones , Fibroblastos/metabolismo , Fibroblastos/citología , Poliésteres/química , Estrés Mecánico
18.
Infect Agent Cancer ; 19(1): 17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664813

RESUMEN

BACKGROUND: Hepatitis C patients with advanced fibrosis or cirrhosis are at high risk of developing hepatocellular carcinoma (HCC), even after sustained virological response (SVR). Clinical recommendations impose a significant burden on patients by recommending lifelong screening for HCC every six months. The goals of this study were to develop a nomogram that accurately stratifies risk of HCC and improve the screening approach that is currently in use. METHOD: Risk factors for HCC were identified using univariate and multivariate analyses in this prospective study. We developed and validated a nomogram for assessing hepatocellular carcinoma risk after SVR in patients with advanced fibrosis and cirrhosis. RESULTS: During the median follow-up period of 61.00 (57.00-66.00) months in the derivation cohort, 37 patients (9.61%) developed HCC. Older age (HR = 1.08, 95% CI 1.02-1.14, p = 0.009), male gender (HR = 2.38, 95% CI 1.10-5.13, p = 0.027), low serum albumin levels (HR = 0.92, 95% CI 0.86-1.00, p = 0.037), and high liver stiffness measurement (LSM) (HR = 1.03, 95% CI 1.01-1.06, p = 0.001) were found to be independent predictors of HCC development. Harrell's C-index for the derivation cohort was 0.81. The nomogram's 3-, 5- and 7-years time-dependent AUROCSs were 0.84 (95% CI 0.80-0.88), 0.83 (95% CI 0.79-0.87), and 0.81 (95% CI 0.77-0.85), respectively (all p > 0.05). According to the nomogram, patients are categorized as having low, intermediate, or high risk. The annual incidence rates of HCC in the three groups were 0.18%, 1.29%, and 4.45%, respectively (all p < 0.05). CONCLUSIONS: Older age, male gender, low serum albumin levels, and high LSM were risk factors for HCC after SVR in hepatitis C patients with advanced fibrosis and cirrhosis. We used these risk factors to establish a nomogram. The nomogram can identify a suitable screening plan by classifying hepatitis C patients according to their risk of HCC.

19.
Environ Pollut ; 351: 124060, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685555

RESUMEN

Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.


Asunto(s)
Arsénico , Metabolismo Energético , Ratones Endogámicos C57BL , Motilidad Espermática , Testículo , Animales , Masculino , Ratones , Motilidad Espermática/efectos de los fármacos , Arsénico/toxicidad , Testículo/efectos de los fármacos , Testículo/metabolismo , Metabolismo Energético/efectos de los fármacos , Espermatozoides/efectos de los fármacos
20.
Front Microbiol ; 15: 1360524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638902

RESUMEN

Rhizoctonia solani AG-3 is a plant pathogenic fungus that belongs to the group of multinucleate Rhizoctonia. According to its internal transcribed spacer (ITS) cluster analysis and host range, it is divided into TB, PT, and TM subgroups. AG-3 TB mainly causes tobacco target spots, AG-3 PT mainly causes potato black scurf, and AG-3 TM mainly causes tomato leaf blight. In our previous study, we found that all 36 tobacco target spot strains isolated from Yunnan (Southwest China) were classified into AG-3 TB subgroup, while only two of the six tobacco target spot strains isolated from Liaoning (Northeast China) were classified into AG-3 TB subgroup, and the remaining four strains were classified into AG-3 TM subgroup, which had a unique taxonomic status, and there was no previous report on the whole genome information of AG-3 TM subgroup. In this study, the whole genomes of R. solani AG-3 strains 3T-1 (AG-3 TM isolated from Liaoning) and MJ-102 (AG-3 TB isolated from Yunnan) isolated from tobacco target spot in Liaoning and Yunnan were sequenced by IIumina and PacBio sequencing platforms. Comparative genomic analysis was performed with the previously reported AG-3 PT strain Rhs1AP, revealing their differences in genomes and virulence factors. The results indicated that the genome size of 3T-1 was 42,103,597 bp with 11,290 coding genes and 49.74% GC content, and the genome size of MJ-102 was 41,908,281 bp with 10,592 coding genes and 48.91% GC content. Through comparative genomic analysis with the previously reported strain Rhs1AP (AG-3 PT), it was found that the GC content between the genomes was similar, but the strains 3T-1 and MJ-102 contained more repetitive sequences. Similarly, there are similarities between their virulence factors, but there are also some differences. In addition, the results of collinearity analysis showed that 3T-1 and MJ-102 had lower similarity and longer evolutionary distance with Rhs1AP, but the genetic relationship between 3T-1 and MJ-102 was closer. This study can lay a foundation for studying the molecular pathogenesis and virulence factors of R. solani AG-3, and revealing its genomic composition will also help to develop more effective disease control strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA