Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Small ; 20(12): e2306563, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929642

RESUMEN

Crystalline carbon nitride (CCN), derived from amorphous polymeric CN, is considered as a new generation of metal-free photocatalyst because of its high crystallinity. In order to further promote the photocatalytic performance of CCN, p-type MnO nanoparticles are in situ synthesized and merged with n-type CCN through a one-pot process to form p-n heterojunction. The formed interfacial electric field between the semiconductors with different work functions efficiently breaks the coulomb interaction between MnO and CCN. The prepared catalysts exhibit drastically increased photocatalytic hydrogen evolution (PHE) activity integrated with oxidation of alkyl and aryl alcohols under irradiation of visible light. In the aqueous solution of benzyl alcohol (BzOH), the hydrogen generation rate over MnO/CCN (39.58 µmol h-1) is nearly 7 times and 37 times that of pure CCN (5.76 µmol h-1) and CN (1.06 µmol h-1), respectively, combining with oxidation of BzOH to benzaldehyde. This work proposes an avenue for in situ construction of a novel 2D material-based S-scheme heterojunction and extends its application in solar energy conservation and utilization.

3.
Angew Chem Int Ed Engl ; 63(11): e202319685, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38151975

RESUMEN

Glycerol is a byproduct of biodiesel production. Selective photoelectrochemical oxidation of glycerol to high value-added chemicals offers an economical and sustainable approach to transform renewable feedstock as well as store green energy at the same time. In this work, we synthesized monoclinic WO3 nanosheets with exposed (002) facets, which could selectively oxidize glycerol to glyceric acid (GLYA) with a photocurrent density of 1.7 mA cm-2 , a 73 % GLYA selectivity and a 39 % GLYA Faradaic efficiency at 0.9 V vs. reversible hydrogen electrode (RHE) under AM 1.5G illumination (100 mW cm-2 ). Compared to (200) facets exposed WO3 , a combination of experiments and theoretical calculations indicates that the superior performance of selective glycerol oxidation mainly originates from the better charge separation and prolonged carrier lifetime resulted from the plenty of surface trapping states, lower energy barrier of the glycerol-to-GLYA reaction pathway, more abundant active sites and stronger oxidative ability of photogenerated holes on the (002) facets exposed WO3 . Our findings show great potential to significantly contribute to the sustainable and environmentally friendly chemical processes via designing high performance photoelectrochemical cell via facet engineering for renewable feedstock transformation.

4.
J Agric Food Chem ; 71(41): 14911-14930, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37800676

RESUMEN

With the development of artificial intelligence (AI), tailoring methods for enzyme engineering have been widely expanded. Additional protocols based on optimized network models have been used to predict and optimize lipase production as well as properties, namely, catalytic activity, stability, and substrate specificity. Here, different network models and algorithms for the prediction and reforming of lipase, focusing on its modification methods and cases based on AI, are reviewed in terms of both their advantages and disadvantages. Different neural networks coupled with various algorithms are usually applied to predict the maximum yield of lipase by optimizing the external cultivations for lipase production, while one part is used to predict the molecule variations affecting the properties of lipase. However, few studies have directly utilized AI to engineer lipase by affecting the structure of the enzyme, and a set of research gaps needs to be explored. Additionally, future perspectives of AI application in enzymes, including lipase engineering, are deduced to help the redesign of enzymes and the reform of new functional biocatalysts. This review provides a new horizon for developing effective and innovative AI tools for lipase production and engineering and facilitating lipase applications in the food industry and biomass conversion.


Asunto(s)
Inteligencia Artificial , Lipasa , Lipasa/química , Algoritmos , Redes Neurales de la Computación
5.
J Colloid Interface Sci ; 648: 898-906, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329601

RESUMEN

Photocatalytic performance of polymeric carbon nitride (CN) is primarily restricted by limited light utilization and poor charge separation efficiency. To this end, skeleton modification strategy was adopted by attaching thiophene ring and polar nickel complex (NiL) onto CN. The obtained bifunctionalized carbon nitride (TCN-NiL) displayed obviously elevated optical absorption and photoexcited charge separation efficiency. The NiL, with polar structure, plays as active sites like cocatalyst thus exhibited platinum-like H2 evolution activity from water splitting under visible light. The optimized photocatalytic H2 generation rate over TCN-NiL reached 136.7 µmol·h-1 without any cocatalyst, the highest rate reported so far in noble-metal-free CN-based catalysts, which is 5 times of that of CN loaded with 3 wt% Pt. Additionally, the maximum wavelength of performing H2 production capacity over TCN-NiL extends to 550 nm from 450 nm of CN, suggesting an excellent visible light absorption ability. This work provides a way for modifying CN to enhance the photocatalytic activities in a noble metal free system.

6.
J Hazard Mater ; 453: 131435, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086671

RESUMEN

The photocatalytic efficiency of polymeric carbon nitride (PCN) suffers from unsatisfactory charge separation because of its amorphous structure. Herein, we report a simple bottom-up method to synthesize a novel structure of rubidium ion inserted PCN (Rb-PCN), which involves the regular alignment of melon chains to endow a crystalline feature in PCN. The insertion of Rb+ decreased not only the N p electrons in the heptazine ring but also the plane angle of the heptazine motifs in the melon chain, which promoted the long-range periodicity and crystallinity of carbon nitride. This structurally rearranged crystalline Rb-PCN demonstrated considerably enhanced separation of charge carriers, resulting in six-fold higher photocatalytic hydrogen evolution activity than its amorphous counterpart. Furthermore, the photoexcited electrons can be efficiently trapped by O2 to generate H2O2, which facilitates the production of reactive oxygen species to inactivate bacteria and degrade organic pollutants, showing great potential for use in both energy and environmental applications.

7.
Adv Mater ; 35(16): e2209469, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36722205

RESUMEN

Reversible protonic ceramic electrochemical cells (R-PCECs) are emerging as ideal devices for highly efficient energy conversion (generating electricity) and storage (producing H2 ) at intermediate temperatures (400-700 °C). However, their commercialization is largely hindered by the development of highly efficient air electrodes for oxygen reduction and water-splitting reactions. Here, the findings in the design of a highly active and durable air electrode are reported: high-entropy Pr0.2 Ba0.2 Sr0.2 La0.2 Ca0.2 CoO3- δ (HE-PBSLCC), which exhibits impressive activity and stability for oxygen reduction and water-splitting reactions, as confirmed by electrochemical characterizations and structural analysis. When used as an air electrode of R-PCEC, the HE-PBSLCC achieves encouraging performances in dual modes of fuel cells (FCs) and electrolysis cells (ECs) at 650 °C, demonstrating a maximum power density of 1.51 W cm-2 in FC mode, and a current density of -2.68 A cm-2 at 1.3 V in EC mode. Furthermore, the cells display good operational durabilities in FC and EC modes for over 270 and 500 h, respectively, and promising cycling durability for 70 h with reasonable Faradaic efficiencies. This study offers an effective strategy for the design of active and durable air electrodes for efficient oxygen reduction and water splitting.

8.
Sci Bull (Beijing) ; 67(1): 71-78, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36545962

RESUMEN

A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride (PCN) for multi-type cross-coupling reactions was developed. This dual-catalytic system enables mild C-H arylation, chalcogenation, and C-N cross-coupling reactions under visible light irradiation with a broad substrate scope. Good-to-excellent yields were obtained with appreciable site selectivity and functional group tolerance. Metal-free and low-cost PCN photocatalyst can easily be recovered and reused several times.

9.
Adv Sci (Weinh) ; 9(21): e2201677, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35652268

RESUMEN

Most near-infrared (NIR) light-responsive photocatalysts inevitably suffer from low charge separation due to the elevated Coulomb interaction between electrons and holes. Here, an n-type doping strategy of alkaline earth metal ions is proposed in crystalline K+ implanted polymeric carbon nitride (KCN) for visible and NIR photoactivity. The n-type doping significantly increases the electron densities and activates the n→π* electron transitions, producing NIR light absorption. In addition, the more localized valence band (VB) and the regulation of carrier effective mass and band decomposed charge density, as well as the improved conductivity by 1-2 orders of magnitude facilitate the charge transfer and separation. The proposed n-type doping strategy improves the carrier mobility and conductivity, activates the n→π* electron transitions for NIR light absorption, and breaks the limitation of poor charge separation caused by the elevated Coulomb interaction.


Asunto(s)
Nitrilos , Polímeros , Conductividad Eléctrica , Rayos Infrarrojos , Nitrilos/química , Polímeros/química
10.
Adv Mater ; 33(39): e2101455, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34369623

RESUMEN

The efficient utilization of near-infrared (NIR) light for photocatalytic hydrogen generation is vitally important to both solar hydrogen energy and hydrogen medicine, but remains a challenge at present, owing to the strict requirement of the semiconductor for high NIR responsiveness, narrow bandgap, and suitable redox potentials. Here, an NIR-active carbon/potassium-doped red polymeric carbon nitride (RPCN) is achieved for by using a similar-structure dopant as the melamine (C3 H6 N6 ) precursor with the solid KCl. The homogeneous and high incorporation of carbon and potassium remarkably narrows the bandgap of carbon nitride (1.7 eV) and endows RPCN with a high NIR-photocatalytic activity for H2 evolution from water at the rate of 140 µmol h-1 g-1 under NIR irradiation (700 nm ≤ λ ≤ 780 nm), and the apparent quantum efficiency is high as 0.84% at 700 ± 10 nm (and 13% at 500 ± 10 nm). A proof-of-concept experiment on a tumor-bearing mouse model verifies RPCN as being capable of intratumoral NIR-photocatalytic hydrogen generation and simultaneous glutathione deprivation for safe and high-efficacy drug-free cancer therapy. The results shed light on designing efficient photocatalysts to capture the full spectrum of solar energy, and also pioneer a new pathway to develop NIR photocatalysts for hydrogen therapy of major diseases.

11.
ChemSusChem ; 14(20): 4516-4524, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34363651

RESUMEN

Crystalline carbon nitride (CCN) with a light response up to 700 nm has been seldom reported but is significant for the artificial photocatalysis. In this study, it is proposed that, unlike acceptors, introducing donors can effectively narrow the bandgap without sacrificing the reduction ability of photogenerated electrons, which is more advantageous to photocatalytic reduction reactions. Hence, a series of heptazine-based K+ -implanted CCN (KCN) with a narrow bandgap (2.87-1.86 eV) are constructed by copolymerization of pyrimidine donors. The optimized photocatalysts can extend the light response to 700 nm and account for approximately 122- and 33-fold enhancements in H2 production (λ>500 nm) in comparison to CN and KCN, respectively. The apparent quantum efficiency (AQE) can reach 8.2 % at 500 nm and is comparable to the top-level CN- and CCN- based materials. Its photoactive wavelength has significant advantages over previously reported CCN-based photocatalysts. This method offers a universal donor bandgap engineering strategy towards photocatalytic reduction reactions.

12.
Natl Sci Rev ; 8(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34262791

RESUMEN

Photothermal nanotheranostics, especially in the near infrared II (NIR-II) region, exhibits a great potential in precision and personalized medicine, owing to high tissue penetration of NIR-II light. The NIR-II-photothermal nanoplatforms with high biocompatibility as well as high photothermal effect are urgently needed but rarely reported so far. Te nanomaterials possess high absorbance to NIR-II light but also exhibit high cytotoxicity, impeding their biomedical applications. In this work, the controllable incorporation of biocompatible Se into the lattice of Te nanostructures is proposed to intrinsically tune their inherent cytotoxicity and enhance their biocompatibility, developing TeSex nano-alloys as a new kind of theranostic nanoplatforms. We have uncovered that the cytotoxicity of Te nanomaterials primarily derives from irreversible oxidation stress and intracellular imbalance of organization and energy, and can be eliminated by incorporating a moderate proportion of Se (x=0.43). We have also discovered that the as-prepared TeSex nano-alloys have extraordinarily high NIR-II-photothermal conversion efficiency (77.2%), 64Cu coordination and computed tomography (CT) contrast capabilities, enabling high-efficacy multimodal photothermal/photoacoustic/positron emission tomography (PET)/CT imaging-guided NIR-II-photothermal therapy of cancer. The proposed nano-alloying strategy provides a new route to improve the biocompatibility of biomedical nanoplatforms and endow them with versatile theranostic functions.

13.
ChemSusChem ; 14(16): 3344-3350, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34180144

RESUMEN

Booming of photocatalytic water splitting technology (PWST) opens a new avenue for the sustainable synthesis of high-value-added hydrogenated and oxidized fine chemicals, in which the design of efficient semiconductors for the in-situ and synergistic utilization of photogenerated redox centers are key roles. Herein, a porous polymeric carbon nitride (PPCN) with a crystalline backbone was constructed for visible light-induced photocatalytic hydrogen generation by photoexcited electrons, followed by in-situ utilization for olefin hydrogenation. Simultaneously, various alcohols were selectively transformed to valuable aldehydes or ketones by photoexcited holes. The porosity of PPCN provided it with a large surface area and a short transfer path for photogenerated carriers from the bulk to the surface, and the crystalline structure facilitated photogenerated charge transfer and separation, thus enhancing the overall photocatalytic performance. High reactivity and selectivity, good functionality tolerance, and broad reaction scope were achieved by this concerted photocatalysis system. The results contribute to the development of highly efficient semiconductor photocatalysts and synergistic redox reaction systems based on PWST for high-value-added fine chemical production.

14.
ChemSusChem ; 14(2): 582-589, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33219740

RESUMEN

Photocatalytic water splitting technology (PWST) enables the direct use of water as appealing "liquid hydrogen source" for transfer hydrogenation reactions. Currently, the development of PWST-based transfer hydrogenations is still in an embryonic stage. Previous reports generally centered on the rational utilization of the in situ generated H-source (electrons) for hydrogenations, in which photogenerated holes were quenched by sacrificial reagents. Herein, the fully-utilization of the liquid H-source and holes during water splitting is presented for photo-reductive N-alkylation of nitro-aromatic compounds. In this integrate system, H-species in situ generated from water splitting were designed for nitroarenes reduction to produce amines, while alkanols were oxidized by holes for cascade alkylating of anilines as well as the generated secondary amines. More than 50 examples achieved with a broad range scope validate the universal applicability of this mild and sustainable coupling approach. The synthetic utility of this protocol was further demonstrated by the synthesis of existing pharmaceuticals via selective N-alkylation of amines. This strategy based on the sustainable water splitting technology highlights a significant and promising route for selective synthesis of valuable N-alkylated fine chemicals and pharmaceuticals from nitroarenes and amines with water and alkanols.

15.
Nat Commun ; 11(1): 4722, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948764

RESUMEN

Precisely controlled deuterium labeling at specific sites of N-alkyl drugs is crucial in drug-development as over 50% of the top-selling drugs contain N-alkyl groups, in which it is very challenging to selectively replace protons with deuterium atoms. With the goal of achieving controllable isotope-labeling in N-alkylated amines, we herein rationally design photocatalytic water-splitting to furnish [H] or [D] and isotope alkanol-oxidation by photoexcited electron-hole pairs on a polymeric semiconductor. The controlled installation of N-CH3, -CDH2, -CD2H, -CD3, and -13CH3 groups into pharmaceutical amines thus has been demonstrated by tuning isotopic water and methanol. More than 50 examples with a wide range of functionalities are presented, demonstrating the universal applicability and mildness of this strategy. Gram-scale production has been realized, paving the way for the practical photosynthesis of pharmaceuticals.


Asunto(s)
Aminas/química , Aminas/metabolismo , Luz , Semiconductores , Alquilación , Aminas/farmacología , Catálisis , Deuterio , Oxidación-Reducción , Preparaciones Farmacéuticas , Protones , Agua , Difracción de Rayos X
16.
ChemSusChem ; 13(4): 756-762, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31840937

RESUMEN

Solar-driven H2 evolution is an essential process for sustainable energy development. Currently, the greatest challenge is the development of efficient photocatalysts to drive this reaction, especially in pure water systems (without the use of a sacrificial agent). In this study, structural defects in Zn-Cd-S nanorod photocatalysts are found to increase charge separation efficiency significantly by sevenfold. Efficient H2 evolution (352.7 µmol h-1 g-1 , 100 mg of catalyst) is achieved by using this defective Zn-Cd-S nanorod photocatalyst in the absence of sacrificial agents and precious metal cocatalysts under visible-light irradiation. Thus, this cocatalyst- and sacrificial-agent-free, visible-light-responsive system shows remarkable potential as a new artificial photosynthesis route for green H2 production.

17.
Chemosphere ; 239: 124739, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31527000

RESUMEN

This work focuses on the photocatalytic removal of recalcitrant organic pollutants in water treatment. Based on facile precipitation reaction, we fabricated a photocatalyst (PbCrO4) in single crystals that present evident response to visible light and employed the catalyst in the photocatalytic decomposition of microcystin-LR (MC-LR). In the degradation test using the nanorods with prepared PbCrO4 photocatalyst, a 100% removal efficiency (27 min reaction) and a kinetics constant of 0.1356 min-1 were achieved. Such a high performance of PbCrO4 in photocatalytic conversion of MC-LR was ascribed to its high carrier separation efficiency, positive valence band (VB) position, and good delocalization of VB and conduction band (CB). The test of electron spin-resonance resonance (ESR) demonstrated that excessive free OH radicals were produced during the PbCrO4 photocatalysis of MC-LR. The density functional theory (DFT) and LC/MS/MS technology were employed to ascertain the intermediates during the MC-LR photocatalytic degradation. The major intermediates were resulted from the attack of hydroxyl radicals to the ADDA side chains of MC-LR structure. This study provides a proof-of-concept strategy to develop effective photocatalysts to efficiently produce OH radicals for the visible-light induced photocatalytic degradation of MC-LR in water.


Asunto(s)
Cromatos/química , Plomo/química , Microcistinas/química , Nanotubos/química , Contaminantes Químicos del Agua/química , Catálisis , Cromatografía Liquida , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Radical Hidroxilo/química , Luz , Toxinas Marinas , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Fotólisis , Espectrometría de Masas en Tándem , Purificación del Agua/métodos , Difracción de Rayos X
18.
ChemSusChem ; 12(19): 4493-4499, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31379104

RESUMEN

Photocatalytic conversion of CO2 into value-added chemical fuels is a promising approach to address the depletion of fossil energy and environment-related concerns. Tailor-making the electronic properties and band structures of photocatalysts is pivotal to improve their efficiency and selectivity in photocatalytic CO2 reduction. Herein, a covalent triazine-based framework was developed containing electron-donor triphenylamine and electron-acceptor triazine components (DA-CTF). The engineered π-conjugated electron donor-acceptor dyads in DA-CTF not only optimized the optical bandgap but also contributed to visible-light harvesting and migration of photoexcited charge carriers. The activity of photocatalytic CO2 reduction under visible light was significantly improved compared with that of traditional g-C3 N4 and reported covalent triazine-based frameworks. This study provides molecular-level insights into the mechanism of photocatalytic CO2 reduction.

19.
Adv Sci (Weinh) ; 6(1): 1801403, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30643725

RESUMEN

In addition to the significance of photocatalytic hydrogen evolution, the utilization of the in situ generated H/D (deuterium) active species from water splitting for artificial photosynthesis of high value-added chemicals is very attractive and promising. Herein, photocatalytic water splitting technology is utilized to generate D-active species (i.e., Dad) that can be stabilized on anchored 2nd metal catalyst and are readily for tandem controllable deuterations of carbon-carbon multibonds to produce high value-added D-labeled chemicals/pharmaceuticals. A highly crystalline K cations intercalated polymeric carbon nitride (KPCN), rationally designed, and fabricated by a solid-template induced growth, is served as an ultraefficient photocatalyst, which shows a greater than 18-fold enhancement in the photocatalytic hydrogen evolution over the bulk PCN. The photocatalytic in situ generated D-species by superior KPCN are utilized for selective deuteration of a variety of alkenes and alkynes by anchored 2nd catalyst, Pd nanoparticles, to produce the corresponding D-labeled chemicals and pharmaceuticals with high yields and D-incorporation. This work highlights the great potential of developing photocatalytic water splitting technology for artificial photosynthesis of value-added chemicals instead of H2 evolution.

20.
Angew Chem Int Ed Engl ; 57(34): 10848-10853, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-29749675

RESUMEN

The development of graphene oxide (GO)-based materials for C-C cross-coupling represents a significant advance in carbocatalysis. Although GO has been used widely in various catalytic reactions, the scope of reactions reported is quite narrow, and the relationships between the type of functional groups present and the specific activity of the GO are not well understood. Herein, we explore CH-CH-type cross-coupling of xanthenes with arenes using GO as real carbocatalysts, and not as stoichiometric reactants. Mechanistic studies involving molecular analogues, as well as trapped intermediates, were carried out to probe the active sites, which were traced to quinone-type functionalities as well as the zigzag edges in GO materials. GO-catalyzed cross-dehydrogenative coupling is operationally simple, shows reusability over multiple cycles, can be conducted in air, and exhibits good functional group tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA