Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(8): 3760-3773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220882

RESUMEN

Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.

2.
Hortic Res ; 11(8): uhae166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108585

RESUMEN

Sinojackia Hu represents the first woody genus described by Chinese botanists, with all species classified as endangered ornamental plants endemic to China. Their characteristic spindle-shaped fruits confer high ornamental value to the plants, making them favored in gardens and parks. Nevertheless, the fruits likely pose a germination obstacle, contributing to the endangered status of this lineage. Here we report the chromosome-scale genome of S. xylocarpa, and explore the mechanisms underlying its endangered status, as well as its population dynamics throughout evolution. Population genomic analysis has indicated that S. xylocarpa experienced a bottleneck effect following the recent glacial period, leading to a continuous population reduction. Examination of the pericarp composition across six stages of fruit development revealed a consistent increase in the accumulation of lignin and fiber content, responsible for the sturdiness of mature fruits' pericarps. At molecular level, enhanced gene expression in the biosynthesis of lignin, cellulose and hemicellulose was detected in pericarps. Therefore, we conclude that the highly lignified and fibrotic pericarps of S. xylocarpa, which inhibit its seed germination, should be its threatening mechanism, thus proposing corresponding strategies for improved conservation and restoration. This study serves as a seminal contribution to conservation biology, offering valuable insights for the study of other endangered ornamental plants.

3.
Microorganisms ; 12(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39203393

RESUMEN

Groundwater is one of the important freshwater resources on Earth and is closely related to human activities. As a good biological vector, a more diverse repertory of antibiotic resistance genes in the water environment would have a profound impact on human medical health. Therefore, this study conducted a metagenomic sequencing analysis of water samples from groundwater monitoring points in the middle and lower reaches of the Yangtze River to characterize microbial community composition and antibiotic resistance in the groundwater environment. Our results show that different microbial communities and community composition were the driving factors in the groundwater environment, and a diversity of antibiotic resistance genes in the groundwater environment was detected. The main source of antibiotic resistance gene host was determined by correlation tests and analyses. In this study, metagenomics was used for the first time to comprehensively analyze microbial communities in groundwater systems in the middle and lower reaches of the Yangtze River basin. The data obtained from this study serve as an invaluable resource and represent the basic metagenomic characteristics of groundwater microbial communities in the middle and lower reaches of the Yangtze River basin. These findings will be useful tools and provide a basis for future research on water microbial community and quality, greatly expanding the depth and breadth of our understanding of groundwater.

4.
Nat Commun ; 15(1): 6864, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127760

RESUMEN

Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.


Asunto(s)
Apiaceae , Vías Biosintéticas , Cumarinas , Filogenia , Cumarinas/metabolismo , Vías Biosintéticas/genética , Apiaceae/genética , Apiaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Duplicación de Gen
5.
J Org Chem ; 89(15): 11043-11047, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39042018

RESUMEN

Asymmetric reduction of 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-one (NEB-7) into 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-ol (NEB-8) is the crucial step for synthesis of liposoluble ß1 receptor blocker nebivolol. Four efficient and stereoselective alcohol dehydrogenases were identified, enabling the stereoselective synthesis of all enantiomers of NEB-8 at a substrate loading of 137 g·L-1 with ee values of >99% and high space-time yields. This study provides novel biocatalysts for the efficient synthesis of nebivolol precursors and uncovers the molecular basis for enantioselectivity manipulation by parametrization of Prelog's rule.


Asunto(s)
Biocatálisis , Nebivolol , Nebivolol/química , Estereoisomerismo , Estructura Molecular , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/síntesis química , Alcohol Deshidrogenasa/antagonistas & inhibidores , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química
6.
Heliyon ; 10(11): e31990, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912436

RESUMEN

The tourism network attention as a reflection of tourism demand is closely related to the tourism flow, the differences between the two has become an important criterion for judging the efficiency of destination tourism demand conversion, as well as a manifestation of the balance and coordination of destination tourism industry. Against the background of insufficient release of tourism demand in China, research on the development differences between tourism network attention and tourism flow can provide a basis for demand-side management and high-quality development. Based on the theory of spatial mismatch, this research analyzes the spatial development difference between the tourism network attention and the tourism flow in Shanghai from 2012 to 2021 using methods such as center of gravity model, spatial mismatch index, and two-dimensional combination matrix. The results show: (1) According to the analysis of the center of gravity model, there was a shift of the center of gravity of tourism network attention with the direction of "south-north", while the tourism flow shifted "west-east"; the center of gravity between tourism network attention and tourism flow began to diverge from 2012 to 2016, gradually converged from 2016 to 2019, and then gradually deviated again after 2020. (2) According to the spatial mismatch index, the spatial mismatch types between tourism network attention and tourism flow in various Districts of Shanghai are mainly negative and low mismatch, with high mismatch areas mainly distributed in the eastern and southwestern parts of Shanghai. (3) Combining the two-dimensional combination matrix, it can be observed that the spatial development difference between tourism network attention and tourism flow in Shanghai show a characteristic of "enlarging-shrinking-enlarging". From 2012 to 2016, the spatial development difference between tourism network attention and tourism flow in Shanghai continuously expanded; from 2017 to 2019, the spatial development difference continuously shrank; and from 2020 to 2021, the spatial differences expanded again. (4) The analysis results of the panel data model show that the development of tourism resources and the level of tourism services have a positive promoting effect on the evolution of spatial mismatch, while the social basic development environment has a negative effect. The research results not only meet the needs of evaluating the high-quality development of the tourism industry in the current economic restructuring, providing direction for the high-quality development of the regional tourism industry, but also enrich the research content of network attention as a tourism element participating in the evaluation of tourism industry development quality, and deepen the relationship research between network attention and tourism flow.

9.
Viruses ; 16(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793554

RESUMEN

Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , China/epidemiología , Masculino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto , SARS-CoV-2/inmunología , Inmunoglobulina G/sangre , Persona de Mediana Edad , Estudios Longitudinales , Inmunoglobulina M/sangre , Inmunidad Celular , Glicoproteína de la Espiga del Coronavirus/inmunología , Personal de Salud
10.
Chin J Nat Med ; 22(1): 75-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278561

RESUMEN

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Humanos , NAD/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Citocinas/metabolismo , Quinonas , Oxidorreductasas
11.
Plant Commun ; 5(1): 100680, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37660252

RESUMEN

Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.


Asunto(s)
Anestésicos , Solanaceae , Tropanos/análisis , Tropanos/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Anestésicos/metabolismo , China
12.
Sci China Life Sci ; 67(4): 803-816, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38087029

RESUMEN

Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.


Asunto(s)
Evolución Molecular , Magnoliopsida , Filogenia , Ranunculales , Genómica , Magnoliopsida/genética , Ecosistema , Fósiles
13.
Hortic Res ; 10(9): uhad147, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37691964

RESUMEN

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.

14.
Asian J Surg ; 46(12): 5507-5508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537071

RESUMEN

Teachers have applied the "Hand as Foot" teaching method in anatomy teaching. It helps students understand and remember effectively, triggers students' interest in learning, and stimulates creativity. Guided by the teacher, my classmates and I also attempted to design some simple gestures to show the anatomical structures of the bony labyrinth to facilitate memorization. Here, as a medical student, I am glad to share my ideas with you.


Asunto(s)
Oído Interno , Estudiantes de Medicina , Humanos , Aprendizaje , Mano , Pie
15.
Biosensors (Basel) ; 13(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367023

RESUMEN

Hydrogen peroxide (H2O2) is one of the important reactive oxygen species (ROS), which is closely related to many pathological and physiological processes in living organisms. Excessive H2O2 can lead to cancer, diabetes, cardiovascular diseases, and other diseases, so it is necessary to detect H2O2 in living cells. Since this work designed a novel fluorescent probe to detect the concentration of H2O2, the H2O2 reaction group arylboric acid was attached to the fluorescein 3-Acetyl-7-hydroxycoumarin as a specific recognition group for the selective detection of hydrogen peroxide. The experimental results show that the probe can effectively detect H2O2 with high selectivity and measure cellular ROS levels. Therefore, this novel fluorescent probe provides a potential monitoring tool for a variety of diseases caused by H2O2 excess.


Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno , Humanos , Especies Reactivas de Oxígeno , Células HeLa , Fluoresceína
16.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090094

RESUMEN

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

17.
Genes (Basel) ; 14(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36833349

RESUMEN

A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.


Asunto(s)
Bacillus , Bacillus subtilis/genética , Filogenia , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Operón
18.
Plant J ; 113(5): 1021-1034, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602036

RESUMEN

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Asunto(s)
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinización/genética , Lignina , Magnoliopsida/genética
19.
Genes (Basel) ; 13(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36553496

RESUMEN

Paeonia suffruticosa Andr., a member of Paeoniaceae, is native to China. In its 1600 years' cultivation, more than 2000 cultivars for different purposes (ornamental, medicinal and oil use) have been inbred. However, there are still some controversies regarding the provenance of tree peony cultivars and the phylogenetic relationships between and within different cultivar groups. In this study, plastid genome sequencing was performed on 10 representative tree peony cultivars corresponding to 10 different flower types. Structure and comparative analyses of the plastid genomes showed that the total lengths of the chloroplast genome of the 10 cultivars ranged from 152,153 to 152,385 bp and encoded 84-88 protein-coding genes, 8 rRNAs and 31-40 tRNAs. The number of simple sequence repeats and interspersed repeat sequences of the 10 cultivars ranged from 65-68 and 40-42, respectively. Plastid phylogenetic relationships of Paeonia species/cultivars were reconstructed incorporating data from our newly sequenced plastid genomes and 15 published species, and results showed that subsect. Vaginatae was the closest relative to the central plains cultivar group with robust support, and that it may be involved in the formation of the group. Paeonia ostii was recovered as a successive sister group to this lineage. Additionally, eleven morphological characteristics of flowers were mapped to the phylogenetic skeleton to reconstruct the evolutionary trajectory of flower architecture in Paeoniaceae.


Asunto(s)
Paeonia , Paeonia/genética , Filogenia , Flores/genética , Mapeo Cromosómico , Plastidios/genética
20.
Front Plant Sci ; 13: 982323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072321

RESUMEN

The Ilex L. (hollies) genus of Aquifoliaceae shows high species diversity in tropical and subtropical regions of Asia and South America. Throughout the range of the genus, Ilex species have been widely used in beverage and medicine production and as ornamentals. Here, we assembled a high-quality, chromosome-level genome of Ilex latifolia, which has extremely high economic value because of its useful secondary metabolite production and the high ornamental value of its decorative red berries. The 99.8% genome sequence was anchored to 20 pseudochromosomes, with a total length of 766.02 Mb and a scaffold N50 of 33.45 Mb. Based on the comparative genomic analysis of 14 angiosperm species, we recovered I. latifolia as the sister group to all other campanulids. Two whole-genome duplication (WGD) events were identified in hollies: one shared ancient WGD in the ancestor of all eudicots and a recent and independent WGD in hollies. We performed a genome-wide search to screen candidate genes involved in the biosynthesis of pentacyclic triterpenoid saponins in I. latifolia. Three subfamilies of CYP450 (CYP71A, CYP72A, and CYP716A) appear to have expanded. The transcriptomic analysis of I. latifolia leaves at five developmental stages revealed that two CYP716A genes and one CYP72A gene probably play important roles in this biosynthetic pathway. In addition, we totally identified 12 genes in the biosynthesis pathways of pelargonidin and cyanidin and observed their differential expression in green and red fruit pericarps, suggesting an association between pelargonidin and cyanidin biosynthesis and fruit pericarp color change. The accumulation of pelargonidin and cyanidin is expected to play an important role in the ornamental value of I. latifolia. Altogether, this study elucidated the molecular basis of the medicinal and ornamental value of I. latifolia, providing a data basis and promising clues for further applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA