Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Dent Educ ; 28(2): 621-630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38234068

RESUMEN

INTRODUCTION: To summarize the development of Innovative Undergraduate Dental Talents Training Project (IUDTTP) and investigate the training effect of this extracurricular dental basic research education activity from 2015 to 2020 to obtain educational implications. MATERIALS AND METHODS: The Guanghua School of Stomatology established the IUDTTP in 2015. The authors recorded the development process and analysed the participation situation, training effect, academic performance and overall satisfaction during 2015-2020 through documental analysis, questionnaire and quiz. The t-test, chi-square test and ANOVA were used to test the difference. RESULTS: The educational goal, education module and assessment system of IUDTTP evolved and developed every year. A total of 336 students and 79 mentors attended the IUDTTP from 2015 to 2020, with the participation rate increasing from 45.1% to 73.5%. The participants exhibited favourable basic research abilities, manifesting as the increase of funded projects and published papers and satisfying quiz scores. Almost all students (94.94%) admitted their satisfaction with the IUDTTP. Moreover, the attended students surpassed the non-participants in terms of GPA, the number of acquired scholarships and outstanding graduates (p < .05). Likewise, the enrolment rate of postgraduate participants was significantly higher than non-participants. CONCLUSIONS: To date, the training effect indicated that the IUDTTP has fulfilled the education aim. It brought positive effects on promoting research interest, cultivating research capacities and enhancing academic performance. The potential deficiencies of extracurricular educational activities, including inflexibility in schedule and insufficiency in systematisms, may be remedied by more systematic educational settings in the future.


Asunto(s)
Educación en Odontología , Estudiantes , Humanos , Estudios Retrospectivos , Motivación
2.
J Mol Neurosci ; 74(1): 4, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183518

RESUMEN

The sympathetic nervous system (SNS) affects many functions of the body. SNS fibers regulate many aspects of liver function, repair, and regeneration. However, in the model of bile duct ligation (BDL) in rats, the kind of impact caused by the regulation of liver SNS on liver fibrosis and liver regeneration is unclear. The main research objective of this experiment is to examine the effect of SNS on liver fibrosis and liver regeneration. Twenty-four male Sprague-Dawley (SD) rats were assigned randomly to four groups. These groups included the sham surgery group (sham), model group (BDL), 6-hydroxydopamine group (BDL+6-OHDA), and spinal cord injury group (BDL+SCI). In the sham group, only exploratory laparotomy was performed without BDL. In the 6-OHDA group, 6-OHDA was used to remove sympathetic nerves after BDL. In the spinal cord injury group, rats underwent simultaneous BDL and spinal cord injury. After 3 weeks of feeding, four groups of rats were euthanized using high-dose anesthesia without pain. Moreover, liver tissue and blood were taken to detect liver fibrosis and regeneration indicators. After intraperitoneal injection of 6-OHDA into BDL rats, liver fibrosis indicators decreased. The administration of the injection effectively alleviated liver fibrosis and inhibited liver regeneration. However, after SCI surgery in BDL rats, liver fibrosis indicators increased. This resulted in exacerbating liver fibrosis and activating liver regeneration. The SNS plays a role in contributing to the liver injury process in the rat BDL model. Therefore, regulating the SNS may become a novel method for liver injury treatment.


Asunto(s)
Cirrosis Hepática , Traumatismos de la Médula Espinal , Animales , Masculino , Ratas , Conductos Biliares/cirugía , Oxidopamina/farmacología , Ratas Sprague-Dawley , Sistema Nervioso Simpático
3.
J Adv Res ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37597747

RESUMEN

INTRODUCTION: Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES: This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS: In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS: The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFß and PI3K-Akt signaling pathway. CONCLUSION: The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.

4.
Mater Today Bio ; 16: 100432, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36204216

RESUMEN

Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA