Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 20: 703-715, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33738325

RESUMEN

Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.

2.
Mol Ther ; 27(6): 1074-1086, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31023523

RESUMEN

Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/virología , Lentivirus/genética , Transducción Genética , Animales , Antígenos CD34/metabolismo , Células Clonales , Terapia Genética/efectos adversos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sustancias Luminiscentes/metabolismo , Macaca mulatta , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas , Empalme de Proteína/genética , Secuencias Repetidas Terminales/genética , Trasplante Autólogo
3.
Mol Ther Methods Clin Dev ; 11: 143-154, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547048

RESUMEN

Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.

4.
Blood ; 131(11): 1195-1205, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29295845

RESUMEN

Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.


Asunto(s)
Envejecimiento/fisiología , Rastreo Celular , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Animales , Autoinjertos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Macaca
5.
Vaccine ; 31(41): 4641-6, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23906890

RESUMEN

With tuberculosis continuing to be a major cause of global morbidity and mortality, a new vaccine is urgently needed. Tuberculosis subunit vaccines have been shown to induce robust immune responses in humans and are a potentially safer alternative to BCG for use in HIV-endemic areas. In this study, we investigated the protective efficacy of 16 different novel Mycobacterium tuberculosis antigens using an aerogenic mouse model of pulmonary tuberculosis. These antigens were tested as subunit vaccines formulated in dimethyl dioctadecyl ammonium bromide (DDA) - D(+) with trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant administered alone as monovalent vaccines or in combination. Six of these antigens (Rv1626, Rv1735, Rv1789, Rv2032, Rv2220, and Rv3478) were shown to consistently and significantly reduce bacterial burdens in the lungs of mice relative to nonvaccinated controls. Three of these six (Rv1789, Rv2220, and Rv3478) induced levels of protective immunity that were essentially equivalent to protection induced by the highly immunogenic antigen 85B (>0.5 log10CFU reduction in the lungs relative to naïve mice). Importantly, when these three antigens were combined, protection essentially equivalent to that mediated by BCG was observed. When either Rv1626 or Rv2032 were combined with the highly protective E6-85 fusion protein (antigen 85B fused to ESAT-6), the protection observed was equivalent to BCG-induced protection at one and three months post-aerosol infection and was significantly greater than the protection observed when E6-85 was administered alone at 3 months post-infection. Using multiparameter flow cytometry, monofunctional IFNγ CD4T cells and different multifunctional CD4T cell subsets capable of secreting multiple cytokines (IFNγ, TNFα and/or IL-2) were shown to be induced by the three most protective antigens with splenocyte CD4T cell frequencies significantly greater than observed in naïve controls. The identification of these highly immunogenic TB antigens and antigen combinations should allow for improved immunization strategies against tuberculosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/administración & dosificación , Carga Bacteriana , Linfocitos T CD4-Positivos/inmunología , Química Farmacéutica , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Pulmón/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
6.
Vaccine ; 29(16): 2902-9, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21338678

RESUMEN

The development of improved vaccines against Mycobacterium tuberculosis has been hindered by a limited understanding of the immune correlates of anti-tuberculosis protective immunity. In this study, we examined the relationship between long-term anti-tuberculosis protection and the mycobacterial-specific CD4 multifunctional T (MFT) cell responses induced by five different TB vaccines (live-attenuated, subunit, viral vectored, plasmid DNA, and combination vaccines) in a mouse model of pulmonary tuberculosis. In a 14-month experiment, we showed that TB vaccine-induced CD4 T cell responses were heterogenous. Antigen-specific monofunctional CD4 T cells expressing single cytokines and MFT CD4 T cells expressing multiple cytokines (IFN-γ and TNF-α, IFN-γ and IFN-γ, TNF-α, and IL-2, and all three cytokines) were identified after the immunizations. Interestingly, compared to the monofunctional cells, significantly higher median fluorescent intensities (MFIs) for IFN-γ and TNF-α were detected for triple-positive MFT CD4 T cells induced by the most protective vaccines while modest differences in relative MFI values were seen for the less protective preparations. Most importantly during the 14-month study, the levels of vaccine-induced pulmonary and splenic protective immunity correlated with the frequency and the integrated MFI (iMFI, frequency×MFI) values of triple-positive CD4 T cells that were induced by the same vaccines. These data support efforts to use MFT cell analyses as a measure of TB vaccine immunogenicity in human immunization studies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunidad Celular , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Aciltransferasas/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Citocinas/inmunología , Femenino , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Factor de Necrosis Tumoral alfa/inmunología
7.
Mol Pharmacol ; 74(3): 872-83, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18556456

RESUMEN

2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) is a member of a recently identified class of redox-reactive thalidomide analogs that show selective killing of leukemic cells by increasing intracellular reactive oxygen species (ROS) and targeting multiple transcriptional pathways. Flavopiridol is a semisynthetic flavonoid that inhibits cyclin-dependent kinases and also shows selective lethality against leukemic cells. The purpose of this study is to explore the efficacy and mechanism of action of the combinatorial use of the redox-reactive thalidomide CPS49 and the cyclin-dependent kinase inhibitor flavopiridol as a selective antileukemic therapeutic strategy. In combination, CPS49 and flavopiridol were found to induce selective cytotoxicity associated with mitochondrial dysfunction and elevations of ROS in leukemic cells ranging from additive to synergistic activity at low micromolar concentrations. Highest synergy was observed at the level of ROS generation with a strong correlation between cell-specific cytotoxicity and reciprocal coupling of drug-induced ROS elevation with glutathione depletion. Examination of the transcriptional targeting of CPS49 and flavopiridol combinations reveals that the drugs act in concert to initiate a cell specific transcriptional program that manipulates nuclear factor-kappaB (NF-kappaB), E2F-1, and p73 activity to promote enhanced mitochondrial instability by simultaneously elevating the expression of the proapoptotic factors BAX, BAD, p73, and PUMA while depressing expression of the antiapoptotic genes MCL1, XIAP, BCL-xL, SURVIVIN, and MDM2. The coadministration of CPS49 and flavopiridol acts through coordinate targeting of transcriptional pathways that enforce selective mitochondrial dysfunction and ROS elevation and is therefore a promising new therapeutic combination that warrants further preclinical exploration.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Homeostasis/efectos de los fármacos , Leucemia/patología , Mitocondrias/efectos de los fármacos , Piperidinas/farmacología , Talidomida/análogos & derivados , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Depuradores de Radicales Libres/farmacología , Glutatión/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Talidomida/farmacología , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA