Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Jpn J Clin Oncol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943456

RESUMEN

BACKGROUND: Proton beams deposit energy along their path, abruptly stopping and generating various radioactive particles, including positrons, along their trajectory. In comparison with traditional proton beam therapy, scanning proton beam therapy is effective in delivering proton beams to irregularly shaped tumors, reducing excessive radiation exposure to the alimentary tract during the treatment of liver cancer. METHODS: In this study, we utilized positron emission tomography/computed tomography (PET/CT) imaging to assess the total amount of radiation to the alimentary tract during liver cancer treatment with proton beam therapy, involving the administration of complex irradiation in 13 patients. RESULTS: This approach resulted in the prevention of excess radiation. The planned radiation restraint doses for the colon exhibited a significant correlation with the PET values of the colon (correlation coefficient 0.8384, P = .0003). Likewise, the scheduled radiation restraint doses for the gastroduodenum were correlated with the PET values of the gastroduodenum (correlation coefficient 0.5397, P = .0569). CONCLUSIONS: PET/CT conducted after proton beam therapy is useful for evaluating excess radiation in the alimentary tract. Proton beam therapy in liver cancer, assessed via PET/CT, effectively reduced alimentary tract radiation, which is vital for optimizing treatments and preventing excess exposure.

2.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38744248

RESUMEN

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Litio , Aceleradores de Partículas , Fantasmas de Imagen , Control de Calidad , Litio/química , Terapia por Captura de Neutrón de Boro/métodos , Humanos , Aceleradores de Partículas/instrumentación , Reproducibilidad de los Resultados , Polimetil Metacrilato/química , Neutrones , Oro/química , Aluminio/química , Agua/química , Radiometría/métodos , Radiometría/instrumentación , Dosificación Radioterapéutica
3.
In Vivo ; 38(1): 409-417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148099

RESUMEN

BACKGROUND/AIM: Interfractional anatomical variations cause considerable differences between planned and actual radiotherapy doses. This study aimed to investigate the efficacy of robust and planning target volume (PTV) margin-based optimizations for the anatomical variations in helical tomotherapy for prostate cancer. PATIENTS AND METHODS: Ten patients underwent treatment-planning kilovolt computed tomography (kVCT) and daily megavolt computed tomography (MVCT). Two types of nominal plans, with a prescription of 60 Gy/20 fractions, were created using robust and PTV margin-based optimizations on kVCT for each patient. Subsequently, the daily estimated doses were recalculated using nominal plans, and all available MVCTs modified the daily patient-setup errors. Due to the difference in dose calculation accuracy between kVCT and MVCT, three scenarios with dose corrections of 1, 2, and 3% were considered in the recalculation process. The dosimetric metrics, including target coverage with the prescription dose, Paddick's conformity index, homogeneity index, and mean dose to the rectum, were analyzed. RESULTS: A dosimetric comparison of the nominal plans demonstrated that the robust plans had better dose conformity, lower target coverage, and dose homogeneity than the PTV plans. In the daily estimated doses of any dose-corrected scenario, the target coverage and dose sparing to the rectum in the robust plans were significantly higher than those in the PTV plans, whereas dose conformity and homogeneity were identical to those of the nominal case. CONCLUSION: Robust optimization is recommended as it accounts for anatomical variations during treatment regarding target coverage in helical tomotherapy plans for prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Próstata/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia
4.
In Vivo ; 37(3): 1016-1021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103115

RESUMEN

BACKGROUND/AIM: This study aimed to confirm the relative biological effectiveness (RBE) values of the proton beam therapy (PBT) system installed in Shonan Kamakura General Hospital. MATERIALS AND METHODS: Clonogenic cell-survival assays were performed with a human salivary gland (HSG) cell line, a human tongue squamous-cell carcinoma cell line (SAS), and a human osteosarcoma cell line (MG-63). Cells were irradiated with proton beams and X-rays with different doses (1.8, 3.6, 5.5, and 7.3 Gy for proton beams, and 2, 4, 6, and 8 Gy for X-rays). Proton beam irradiation used spot-scanning methods and three different depths (at the proximal, center, and distal sides of the spread-out Bragg peak). RBE values were obtained from a comparison of the dose that resulted in a surviving fraction of 10% (D10). RESULTS: D10 of proton beams at the proximal, center, and distal sides and X-rays in HSG were 4.71, 4.71, 4.51, and 5.25 Gy, respectively; those in SAS were 5.08, 5.04, 5.01, and 5.59 Gy, respectively; and those in MG-63 were 5.36, 5.42, 5.12, and 6.06 Gy, respectively. The RBE10 values at the proximal, center, and distal sides in HSG were 1.11, 1.11, and 1.16 respectively; those in SAS were 1.10, 1.11, and 1.12, respectively; and those in MG-63 were 1.13, 1.12, and 1.18, respectively. CONCLUSION: RBE10 values of 1.10-1.18 were confirmed by in vitro experiments using the PBT system. These results are considered acceptable for clinical use in terms of therapeutic efficacy and safety.


Asunto(s)
Terapia de Protones , Humanos , Protones , Relación Dosis-Respuesta en la Radiación , Efectividad Biológica Relativa , Hospitales Generales , Supervivencia Celular
5.
J Appl Clin Med Phys ; 24(4): e13881, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576418

RESUMEN

BACKGROUND: Geometrical uncertainties in patients can severely affect the quality of radiotherapy. PURPOSE: We evaluated the dosimetric efficacy of robust optimization for helical intensity-modulated radiotherapy (IMRT) planning in the presence of patient setup uncertainty and anatomical changes. METHODS: Two helical IMRT plans for 10 patients with localized prostate cancer were created using either minimax robust optimization (robust plan) or a conventional planning target volume (PTV) margin approach (PTV plan). Plan robustness was evaluated by creating perturbed dose plans with setup uncertainty from isocenter shifts and anatomical changes due to organ variation. The magnitudes of the geometrical uncertainties were based on the patient setup uncertainty considered during robust optimization, which was identical to the PTV margin. The homogeneity index, and target coverage (TC, defined as the V100% of the clinical target volume), and organs at risk (OAR; rectum and bladder) doses were analyzed for all nominal and perturbed plans. A statistical t-test was performed to evaluate the differences between the robust and PTV plans. RESULTS: Comparison of the nominal plans showed that the robust plans had lower OAR doses and a worse homogeneity index and TC than the PTV plans. The evaluations of robustness that considered setup errors more than the PTV margin demonstrated that the worst-case perturbed scenarios for robust plans had significantly higher TC while maintaining lower OAR doses. However, when anatomical changes were considered, improvement in TC from robust optimization was not observed in the worst-case perturbed plans. CONCLUSIONS: For helical IMRT planning in localized prostate cancer, robust optimization provides benefits over PTV margin-based planning, including better OAR sparing, and increased robustness against systematic patient-setup errors.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Dosificación Radioterapéutica , Incertidumbre , Planificación de la Radioterapia Asistida por Computador , Neoplasias de la Próstata/radioterapia , Órganos en Riesgo
6.
Behav Brain Res ; 427: 113846, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35306097

RESUMEN

Mammalian adult females develop specialized body parts, namely mammary glands and uterus, and exhibit specialized maternal behavior, lactation/nursing and care for their offspring. As the brain plays an essential role in regulating related physiological functions in the body, the morphology or function of the mammalian brain has been modified to manage newly equipped structures and functions. However, this evolutionary process is largely unknown. Pou3f2/Brn2 is an evolutionarily remarkable gene as it contains mammal-specific base sequences encoding three stretches of homopolymeric amino acids (polyAAs): poly-glycine (polyG), poly-glutamine (polyQ), and poly-proline (polyP). Previously, we demonstrated that POU3F2 acquisition of mammal-specific polyAAs contributed to the establishment of behaviors characteristic of mammals. Here, we demonstrated that Pou3f2⊿ mice displayed basic features required for maternal care. However, Pou3f2⊿ mice exhibited deficits in the reproductive performance and maternal behavior, which were not fully improved by multiparas. Therefore, we extensively investigated pup retrieval behavior and discovered that the retrieval and the exploratory behaviors were impaired in Pou3f2⊿ female mice, but not in males. Altogether, our data suggest that POU3F2 acquisition of mammal-specific polyAAs contributes to the continuous awareness and curiosity needed for maternal interaction.


Asunto(s)
Conducta Exploratoria , Conducta Materna , Animales , Encéfalo/metabolismo , Conducta Exploratoria/fisiología , Femenino , Humanos , Lactancia , Masculino , Mamíferos , Conducta Materna/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA