Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Autoimmunity ; 57(1): 2319209, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38389171

RESUMEN

Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-Faslpr/lpr mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-Faslpr/lpr at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (Krt15, Slc7a3, Sprr2a3) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (Ccl5, Cxcl9) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.


Asunto(s)
Enfermedades Autoinmunes , Placenta , Embarazo , Ratones , Femenino , Masculino , Animales , Ratones Endogámicos MRL lpr , Placenta/metabolismo , Linfocitos T , Fertilidad , Sistemas de Transporte de Aminoácidos Básicos
2.
FEBS Open Bio ; 14(1): 37-50, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953493

RESUMEN

Male and female reproductive tracts develop from anterior intermediate mesoderm with similar differentiation processes. The anterior intermediate mesoderm develops into the mesonephros, and the Wolffian duct initiates by epithelialization in the mesonephros. The Müllerian duct invaginates from the coelomic epithelium of the cranial mesonephros for ductal formation and is then regionalized into proximal to caudal female reproductive tracts. In this study, we focused on the epithelialization of the Wolffian duct, initiation of the Müllerian duct, and the regionalization step of the Müllerian ducts as a continuous process. By using intermediate mesodermal cells from mouse pluripotent stem cells, we identified that inhibition of SMAD2/3 signaling might be involved in the differentiation into mesenchymal cells, after which mesonephric cells might be then epithelialized during differentiation of the Wolffian duct. Aggregation of coelomic epithelial cells might be related to initiation of the Müllerian duct. Transcriptomic analysis predicted that consensus sequences of SMAD3/4 were enriched among highly expressed genes in the proximal Müllerian duct. SMAD2/3 signaling to regulate differentiation of the Wolffian duct was continuously activated in the proximal Müllerian duct and was involved in proximal and oviductal regionalization. Therefore, SMAD2/3 signaling may be finely tuned to regulate differentiation from initiation to regionalization steps.


Asunto(s)
Conductos Paramesonéfricos , Conductos Mesonéfricos , Ratones , Animales , Masculino , Femenino , Conductos Mesonéfricos/fisiología , Conductos Paramesonéfricos/fisiología , Diferenciación Celular , Células Epiteliales , Transducción de Señal
3.
J Dairy Sci ; 106(12): 9393-9409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641252

RESUMEN

Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.


Asunto(s)
Enfermedades de los Bovinos , Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Bovinos , Femenino , Alelos , Susceptibilidad a Enfermedades/veterinaria , Antígenos de Histocompatibilidad Clase II , Complejo Mayor de Histocompatibilidad
4.
Sci Rep ; 12(1): 6398, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430611

RESUMEN

Dysregulation of nicotinamide adenine dinucleotide (NAD +) metabolism contributes to the initiation and progression of age-associated diseases, including chronic kidney disease (CKD). Nicotinamide N-methyltransferase (NNMT), a nicotinamide (NAM) metabolizing enzyme, regulates both NAD + and methionine metabolism. Although NNMT is expressed abundantly in the kidney, its role in CKD and renal fibrosis remains unclear. We generated NNMT-deficient mice and a unilateral ureter obstruction (UUO) model and conducted two clinical studies on human CKD to investigate the role of NNMT in CKD and fibrosis. In UUO, renal NNMT expression and the degraded metabolites of NAM increased, while NAD + and NAD + precursors decreased. NNMT deficiency ameliorated renal fibrosis; mechanistically, it (1) increased the DNA methylation of connective tissue growth factor (CTGF), and (2) improved renal inflammation by increasing renal NAD + and Sirt1 and decreasing NF-κB acetylation. In humans, along with CKD progression, a trend toward a decrease in serum NAD + precursors was observed, while the final NAD + metabolites were accumulated, and the level of eGFR was an independent variable for serum NAM. In addition, NNMT was highly expressed in fibrotic areas of human kidney tissues. In conclusion, increased renal NNMT expression induces NAD + and methionine metabolism perturbation and contributes to renal fibrosis.


Asunto(s)
NAD , Nicotinamida N-Metiltransferasa , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Femenino , Fibrosis , Humanos , Masculino , Metionina , Ratones , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo
5.
J Virol Methods ; 297: 114264, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411645

RESUMEN

The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease in cattle. We previously developed the quantitative real-time PCR (qPCR) assay to measure the proviral loads of BLV using coordination of common motif (CoCoMo) degenerate primers. We here found four single mutations within the probe region of the original BLV-CoCoMo-qPCR assay, three of which have negative impact on its sensitivity in the probe sequences of the long terminal regions of the BLV-CoCoMo-qPCR-2 assay, using genomic DNA from 887 cows from 27 BLV-positive farms via a nationwide survey conducted in 2011 and 2017 in Japan. Therefore, the modified probes were designed to completely match the three BLV mutant strains identified here. Moreover, we examined the optimum ratio of the concentration to be mixed with the wild type and three new BLV TaqMan probes were designed here using genomic DNAs extracted from cattle naturally infected with the wild type BLV strain and three mutant strains. Finally, we successfully established an improved assay maintained the original sensitivity and reproducibility and can detect novel BLV strains.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Bovinos , Leucosis Bovina Enzoótica/diagnóstico , Femenino , Virus de la Leucemia Bovina/genética , Provirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
6.
Pathogens ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922152

RESUMEN

Perinatal transmission plays a critical role in the spread of bovine leukemia virus (BLV) infection in cattle herds. In the Holstein breed, we previously identified BLV resistant and susceptible bovine leukocyte antigen (BoLA)-DRB3 alleles, including BoLA-DRB3*009:02 and *014:01:01 with a low BLV proviral load (PVL), and *015:01 and *012:01 with a high PVL. Here, we evaluated the perinatal BLV transmission risk in dams with different BoLA-DRB3 alleles. BoLA-DRB3 alleles of 120 dam-calf pairs from five dairy farms in Japan were identified; their PVL was quantified using the BLV-Coordination of Common Motifs (CoCoMo)-qPCR-2 assay. Ninety-six dams were BLV-positive, and 29 gave birth to BLV-infected calves. Perinatal transmission frequency was 19% in dams with resistant alleles suppressed to a low PVL level, and 38% and 25% in dams with susceptible and neutral alleles that maintained high PVL levels, respectively. Notably, all calves with resistant alleles were BLV free, whereas 30% of calves with susceptible genes were infected. Thus, vertical transmission risk was extremely lower for dams and calves with resistant alleles compared to those with susceptible alleles. Our results can inform the development of effective BLV eradication programs under field conditions by providing necessary data to allow for optimal selection of dams for breeding.

7.
Biochem Biophys Rep ; 17: 44-50, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30555939

RESUMEN

In female mice, proximal, middle and caudal Müllerian ducts (MDs) differentiate into oviduct, uterus and vagina, respectively. The fates of female reproductive tract epithelia are determined by the mesenchyme. However, the mesenchymal fate determination system is still unclear. It is reported that presence or absence of retinoic acid (RA) signaling in MD mesenchyme induced uterine or vaginal mesenchyme, respectively. To analyze determination of the borderline, RA signal switching factors were found to play critical roles. Expression of a RA metabolizing enzyme, CYP26A1, was high in the epithelium of caudal MD and urogenital sinus, indicating that the enzyme causes the absence of RA signaling in the region. mRNA expression of some transcription factors regulating Aldh1a2, RA synthesis enzyme expressed in MDs, in other tissues was detected in MDs. When the transcription factor genes were overexpressed in a uterine mesenchymal cell line, C/ebpδ overexpression stimulated Aldh1a2 expression. Furthermore, C/EBPδ protein was strongly expressed in the proximal and middle regions of the MDs and bound to the Aldh1a2 promoter in vivo. Since C/ebpδ mRNA expression was maintained at the same level in proximal, middle and caudal MDs, we hypothesize that a high frequency of mitosis induces a low level protein expression in MD mesenchyme. In fact, the mitotic activity was significantly high in caudal mesenchyme, and a mathematical model showed that a gradient of protein was induced by cell proliferation. Therefore, morphogenesis of MDs controls the fate of mesenchyme via RA degradation in urogenital sinus and a gradient of proteins involved in RA synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA