RESUMEN
(+)-Plakevulin A (1), an oxylipin isolated from an Okinawan sponge Plakortis sp. inhibits enzymatic inhibition of DNA polymerases (pols) α and δ and exhibits cytotoxicity against murine leukemia (L1210) and human cervix carcinoma (KB) cell lines. However, the half-maximal inhibitory concentration (IC50) value for cytotoxicity significantly differed from those observed for the enzymatic inhibition of pols α and ß, indicating the presence of target protein(s) other than pols. This study demonstrated cytotoxicity against human promyelocytic leukemia (HL60), human cervix epithelioid carcinoma (HeLa), mouse calvaria-derived pre-osteoblast (MC3T3-E1), and human normal lung fibroblast (MRC-5) cell lines. This compound had selectivity to cancer cells over normal ones. Among these cell lines, HL60 exhibited the highest sensitivity to (+)-plakevulin A. (+)-Plakevulin A induced DNA fragmentation and caspase-3 activation in HL60 cells, indicating its role in apoptosis induction. Additionally, hydroxysteroid 17-ß dehydrogenase 4 (HSD17B4) was isolated from the HL60 lysate as one of its binding proteins through pull-down experiments using its biotinylated derivative and neutravidin-coated beads. Moreover, (+)-plakevulin A suppressed the activation of interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3). Because the knockdown or inhibition of STAT3 induces apoptosis and HSD17B4 regulates STAT3 activation, (+)-plakevulin A may induce apoptosis in HL60 cell lines by suppressing STAT3 activation, potentially by binding to HSD17B4. The present findings provide valuable information for the mechanism of its action.
Asunto(s)
Apoptosis , Interleucina-6 , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Células HL-60 , Interleucina-6/metabolismo , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-ActividadRESUMEN
The mammalian oviductal lumen is a specialized chamber that provides an environment that strictly regulates fertilization and early embryogenesis, but the regulatory mechanisms to gametes and zygotes are unclear. We evaluated the oviductal regulation of early embryonic development using Ovgp1 (encoding an oviductal humoral factor, OVGP1)-knockout golden hamsters. The experimental results revealed the following: (1) female Ovgp1-knockout hamsters failed to produce litters; (2) in the oviducts of Ovgp1-knockout animals, fertilized eggs were sometimes identified, but their morphology showed abnormal features; (3) the number of implantations in the Ovgp1-knockout females was low; (4) even if implantations occurred, the embryos developed abnormally and eventually died; and (5) Ovgp1-knockout female ovaries transferred to wild-type females resulted in the production of Ovgp1-knockout egg-derived OVGP1-null litters, but the reverse experiment did not. These results suggest that OVGP1-mediated physiological events are crucial for reproductive process in vivo, from fertilization to early embryonic development. This animal model shows that the fate of the zygote is determined not only genetically, but also by the surrounding oviductal microenvironment.
Asunto(s)
Trompas Uterinas , Oviductos , Humanos , Embarazo , Animales , Cricetinae , Femenino , Mesocricetus , Células Germinativas , Ovario , Mamíferos , GlicoproteínasRESUMEN
In recent years, cells provided by cell banks and medical facilities have been used for cell therapy, regenerative therapy, and fundamental research. Cryopreservation is an effective means of maintaining stable cell quality over a long period of time. The slow freezing method is most suitable for processing many human cells isolated simultaneously from organs and tissues, but it is necessary to develop a freezing solution for this method. In this study, we report the successful development of a dimethyl sulfoxide (DMSO)-free freezing medium for differentiated neuronal cells. Neuronal differentiation results in the differentiation of undifferentiated SK-N-SH cells into neuronal cells. A basic freezing medium (BFM) was prepared using Dulbecco's modified Eagle's medium, 1 M maltose, and 1% sericin as the essential ingredients, supplemented with 5%-40% propylene glycol (PG). Each BFM supplemented with 5%-40% PG was evaluated in undifferentiated cells. After thawing, BFM supplemented with 10% and 20% PG were 83% and 88% viable, respectively. There was no significant difference between the 10% and 20% PG groups. However, a significant difference was observed when the concentration of PG in the BFM decreased by 5% (5% PG vs. 10% PG; p = 0.0026). Each DMSO-free BFM was evaluated using differentiated neuronal cells. There was no significant difference between the 10% PG BFM and stem-CB-free groups. Viability was significantly different in the 10% glycerol BFM (4.8%) and 10% PG BFM (45%) (p = 0.028). The differentiated cells with 10% PG BFM showed higher adherence to culture dishes than those with 10% glycerol BFM. These results show that BFM containing PG was effective in differentiating neuronal cells. DMSO affects the central nervous system at low concentrations. This report indicates that DMSO is unsuitable for neuronal cells with multipotent differentiation potential. Therefore, it is essential for cell banking and transplantation medicine services to select appropriate cell freezing media.
Asunto(s)
Dimetilsulfóxido , Glicerol , Humanos , Dimetilsulfóxido/farmacología , Criopreservación/métodos , Congelación , Diferenciación Celular , Supervivencia Celular , Crioprotectores/farmacologíaRESUMEN
Purpose: Vernal keratoconjunctivitis (VKC) is a severe, recurrent allergic conjunctivitis. Previously, we found high concentrations of oncostatin M (OSM) in the tears of patients with VKC. Here, we investigated the role of OSM in VKC by focusing on epithelial barrier function and IL-33 production. Methods: To assess the effect of OSM on the barrier function of human conjunctival epithelial cells (HConEpiCs), we measured transepithelial electrical resistance and dextran permeability. We also assessed expression of tight junction-related proteins such as E-cadherin and ZO-1 in HConEpiCs by Western blotting and immunofluorescence. Then we used immunohistochemistry to evaluate expression of Ki-67, E-cadherin, epithelial-mesenchymal transition-related proteins, and IL-33 in giant papillae (GPs) from patients with VKC. In addition, we used Western blotting, microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay to examine whether OSM activates signal transducer and activator of transcription 1 (STAT1) or STAT3 and induces the expression of various genes in human conjunctival fibroblasts (HConFs). Results: OSM reduced expression of E-cadherin and ZO-1 in HConEpiCs, indicating barrier dysfunction. In immunohistochemistry, Ki-67 expression was present in the lower epithelial layer of the GPs, and E-cadherin expression was reduced in the superficial and lower layers; double staining revealed that GPs had a high number of fibroblasts expressing IL-33. In addition, in HConFs, OSM phosphorylated both STAT1 and STAT3 and induced IL-33. Conclusions: OSM has important roles in severe, prolonged allergic inflammation by inducing epithelial barrier dysfunction and IL-33 production by conjunctival fibroblasts.
Asunto(s)
Conjuntivitis Alérgica , Humanos , Conjuntivitis Alérgica/metabolismo , Oncostatina M/metabolismo , Oncostatina M/farmacología , Interleucina-33 , Antígeno Ki-67/metabolismo , ARN Mensajero/genética , Epitelio/metabolismo , Fibroblastos/metabolismo , Cadherinas/metabolismoRESUMEN
The effective use of human-derived cells that are difficult to freeze, such as parenchymal cells and differentiated cells from stem cells, is crucial. A stable supply of damage-sensitive cells, such as differentiated neuronal cells, neurons, and glial cells can contribute considerably to cell therapy. We developed a serum-free freezing solution that is effective for the cryopreservation of differentiated neuronal cells. The quality of the differentiated and undifferentiated SK-N-SH cells was determined based on cell viability, live-cell recovery rate, and morphology of cultured cells, to assess the efficacy of the freezing solutions. The viability and recovery rate of the differentiated SK-N-SH neuronal cells were reduced by approximately 1.5-folds compared to that of the undifferentiated SK-N-SH cells. The viability and recovery rate of the differentiated SK-N-SH cells were remarkably different between the freezing solutions containing 10% DMSO and that containing 10% glycerol. Cryoprotectants such as fetal bovine serum (FBS), antifreeze proteins (sericin), and sugars (maltose), are essential for protecting against freeze damage in differentiated neuronal cells and parenchymal cells. Serum-free alternatives (sericin and maltose) could increase safety during cell transplantation and regenerative medicine. Considering these, we propose an effective freezing solution for the cryopreservation of neuronal cells.
RESUMEN
Epo-C12 is a synthetic derivative of epolactaene, isolated from Penicillium sp. BM 1689-P. Epo-C12 induces apoptosis in human acute lymphoblastoid leukemia BALL-1 cells. In our previous studies, seven proteins that bind to Epo-C12 were identified by a combination of pull-down experiments using biotinylated Epo-C12 (Bio-Epo-C12) and mass spectrometry. In the present study, the effect of Epo-C12 on peroxiredoxin 1 (Prx 1), one of the proteins that binds to Epo-C12, was investigated. Epo-C12 inhibited Prx 1 peroxidase activity. However, it did not suppress its chaperone activity. Binding experiments between Bio-Epo-C12 and point-mutated Prx 1s suggest that Epo-C12 binds to Cys52 and Cys83 in Prx 1. The present study revealed that Prx 1 is one of the target proteins through which Epo-C12 exerts an apoptotic effect in BALL-1 cells.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Peroxirredoxinas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Línea Celular Tumoral , Inhibidores Enzimáticos , Compuestos Epoxi/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Mutación , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Polienos/químicaRESUMEN
Mammalian pregnancy is a curious life phenomenon. Immunologically, the mechanism of pregnancy is difficult to explain because it involves the coexistence of an external foreign body (the embryo) and the host (the mother) for a period of time. How did mammals acquire the ability to become pregnant in parallel with altered immunity? Sex in the evolution of life and its impact on anthropology are major topics of discussion. In this paper, we outline (1) sex and evolution in mammals after the advent of our direct ancestors (apes) up to humans (i.e., the Cenozoic Quaternary), including anthropological aspects such as the development of the central nervous system; (2) the development of reproductive immunity during the Paleozoic era, when biodiversity developed explosively (and many sexually reproducing organisms have emerged); and (3) the characteristic reproductive strategies of mammals, including humans with the immunological aspects of viviparity. We present an overview of mammalian reproductive immunity, which is a heretical aspect of immunology.
Asunto(s)
Mamíferos , Reproducción , Animales , Antropología , Embrión de Mamíferos , Femenino , Humanos , Embarazo , Conducta SexualRESUMEN
Plerixafor was introduced to Japan in 2017 as a stem cell mobilization enhancement reagent, but the threshold for its use remains unclear. In this study, we assessed 57 patients treated with plerixafor (33 patients with multiple myeloma (MM) and 24 with malignant lymphoma (ML) and 152 patients without plerixafor administration. When CD34+ cell pre-counts were between 5.5 and 20 cells/µL in MM or 6 and 21 cells/µL in ML, the CD34+ cell count increased significantly, attaining the highest yield in response to plerixafor (achievement rate by one leukapheresis is 93.3% and 91.7% in MM and ML, at P < .001 and P = .012, respectively). In case the CD34+ cell pre-count was less than 5.5 cells/µL, an increase of at least 7 cells/µL from baseline by plerixafor was the necessary condition to achieve successful collection through a two-time leukapheresis. Monitoring CD34+ cell numbers might improve the collection efficiency and reduce the cost.
Asunto(s)
Antígenos CD34/metabolismo , Bencilaminas/administración & dosificación , Ciclamas/administración & dosificación , Movilización de Célula Madre Hematopoyética/métodos , Linfoma/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Células Madre de Sangre Periférica/metabolismo , Adulto , Anciano , Fármacos Anti-VIH/administración & dosificación , Femenino , Trasplante de Células Madre Hematopoyéticas , Hospitales Universitarios , Humanos , Japón , Linfoma/metabolismo , Linfoma/terapia , Masculino , Persona de Mediana Edad , Mieloma Múltiple/metabolismo , Mieloma Múltiple/terapia , Trasplante AutólogoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Men and women become infertile with age, but the mechanism of declining male fertility, more specifically, the decrease in in sperm quality, is not well known. Citrate synthase (CS) is a core enzyme of the mitochondrial tricarboxylic acid (TCA) cycle, which directly controls cellular function. Extra-mitochondrial CS (eCS) is produced and abundant in the sperm head; however, its role in male fertility is unknown. We investigated the role of eCS in male fertility by producing eCs-deficient (eCs-KO) mice. The initiation of the first spike of Ca2+ oscillation was substantially delayed in egg fused with eCs-KO sperm, despite normal expression of sperm factor phospholipase C zeta 1. The eCs-KO male mice were initially fertile, but the fertility dropped with age. Metabolomic analysis of aged sperm revealed that the loss of eCS enhances TCA cycle in the mitochondria with age, presumably leading to depletion of extra-mitochondrial citrate. The data suggest that eCS suppresses age-dependent male infertility, providing insights into the decline of male fertility with age.
Asunto(s)
Envejecimiento/metabolismo , Señalización del Calcio/fisiología , Citrato (si)-Sintasa , Infertilidad Masculina/metabolismo , Espermatozoides , Animales , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico/fisiología , Femenino , Infertilidad Masculina/fisiopatología , Masculino , Metaboloma/fisiología , Ratones , Óvulo/metabolismo , Espermatozoides/enzimología , Espermatozoides/metabolismoRESUMEN
The acrosome reaction is a multi-step event essential for physiological fertilization. During the acrosome reaction, gamete fusion-related factor IZUMO1 translocates from the anterior acrosome to the equatorial segment and assembles the gamete fusion machinery. The morphological changes in the acrosome reaction process have been well studied, but little is known about the molecular mechanisms of acrosome reorganization essential for physiological gamete membrane fusion. To elucidate the molecular mechanisms of IZUMO1 translocation, the steps of the acrosome reaction during that process must be clarified. In this study, we established a method to detect the early steps of the acrosome reaction and subdivided the process into seven populations through the use of two epitope-defined antibodies, anti-IZUMO1 and anti-SPACA1, a fertilization-inhibiting antibody. We found that part of the SPACA1 C-terminus in the periacrosomal space was cleaved and had begun to disappear when the vesiculation of the anterior acrosome occurred. The IZUMO1 epitope externalized from the acrosomal lumen before acrosomal vesiculation and phosphorylation of IZUMO1 occurred during the translocation to the equatorial segment. IZUMO1 circumvented the area of the equatorial segment where the SPACA1C-terminus was still localized. We therefore propose an IZUMO1 translocation model and involvement of SPACA1.
Asunto(s)
Membrana Celular/metabolismo , Isoantígenos/metabolismo , Fusión de Membrana/fisiología , Oocitos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animales , Epítopos/metabolismo , Isoantígenos/genética , Masculino , Ratones , Proteínas de Plasma Seminal/genética , Capacitación Espermática/fisiologíaRESUMEN
Ts4, an autosperm-monoclonal antibody (mAb), reacts with a specific oligosaccharide (OS) of glycoproteins containing bisecting N-acetylglucosamine residues. Ts4 reactivity was observed against epididymal spermatozoa, testicular germ cells, and the early embryo, but not against major organs in adult mice. In mature testis, Ts4 exhibits immunoreactivity with a germ cell-specific glycoprotein, TEX101, whereas the mAb immunoreacts with alpha-N-acetylglucosaminidase in the acrosomal region of cauda epididymal spermatozoa. Thus, Ts4 seems to react against different molecules throughout spermiogenesis via binding to its OS epitope. Since the Ts4-epitope OS is observed only in reproduction-related regions, the Ts4-reactive OS may play a role in the reproductive process. The aim of this study is to investigate the characteristics of the Ts4-reactive molecule(s) during testicular development. Ts4 reactivity was observed in testes from the prenatal period; however, its distribution changed according to the stage of maturation and was identical to that of the adult testes after 29-day-postpartum (dpp). Ts4 immunoreactivity was detected against a protein with 63 kDa in testis from 1 to 29 dpp. In contrast, Ts4 showed reactivity against some other glycoproteins after 29 dpp, including TEX101 at the 5-week-old stage and onward. To identify the Ts4-reactive 63 kDa molecule, we identified NUP62 as the target of Ts4 in 22 dpp testis using liquid chromatography-tandem mass spectrometry analysis. Because NUP62 has been known to play active roles in a variety of cellular processes including mitosis and cell migration, the bisecting GlcNAc recognized by Ts4 on NUP62 may play a role in regulating the early development of germ cells in male gonadal organs.
Asunto(s)
Acetilglucosamina/inmunología , Anticuerpos Monoclonales/inmunología , Autoanticuerpos/inmunología , Glicoproteínas/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/inmunología , Proteínas de Complejo Poro Nuclear/metabolismo , Testículo/citología , Animales , Epidídimo/citología , Epidídimo/inmunología , Epidídimo/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Espermatozoides/citología , Espermatozoides/inmunología , Espermatozoides/metabolismo , Testículo/inmunología , Testículo/metabolismoRESUMEN
Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.
Asunto(s)
Haploinsuficiencia , Proteínas de Choque Térmico/genética , Infertilidad Masculina/genética , Cabeza del Espermatozoide/patología , Espermatozoides/patología , Animales , Eliminación de Gen , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Cabeza del Espermatozoide/metabolismo , Espermatozoides/metabolismoRESUMEN
Protein denaturants play an important role in medical and biological research, and development of new denaturants is widely explored to study aging and various diseases. In this research, we treated lysozyme, a model protein, with photocatalysts of ground Rh-doped SrTiO3 (g-STO:Rh) and ground Rh-Sb-co-doped SrTiO3 (g-STO:Rh/Sb) under visible light irradiation to explore the potential of those photocatalysts as denaturants. SDS-PAGE showed that photocatalysis with g-STO:Rh induced the fragmentation of lysozyme into unidentifiable decomposition products. BCA and Bradford protein assays indicated that the peptide bonds and basic, aromatic and N-terminal amino acid residues in lysozyme were denaturated by g-STO:Rh photocatalysis. The denaturation of those amino acids, as quantified by the decreased solubility of lysozyme, was estimated to be more severe by Bradford protein assay than by BCA protein assay. Circular dichroism (CD) spectra of lysozyme revealed that the secondary structure was denatured by g-STO:Rh photocatalysis, indicating that g-STO:Rh photocatalysis is especially effective against the amino acid residues that form the secondary structure via hydrogen bonds. Furthermore, the lytic activity of lysozyme was reduced by g-STO:Rh photocatalysis, owing to denaturation of the enzyme. The visible-light-responsive photocatalyst of g-STO:Rh/Sb accelerates the oxidation reaction and has stronger oxidizing power than g-STO:Rh. Lysozyme was denatured more quickly by g-STO:Rh/Sb photocatalysis than by g-STO:Rh according to analysis by SDS-PAGE, CD spectroscopy, BCA and Bradford protein assays, and lytic activity. These results suggest that higher photocatalytic activity induces more significant denaturation of lysozyme, implying that the main factor of photocatalytic denaturation of lysozyme is oxidation. It should be noted that, as far as we know, this is the first report for denaturation of protein using visible-light-responsive photocatalyst.
Asunto(s)
Antimonio/química , Muramidasa/química , Óxidos/química , Desnaturalización Proteica/efectos de la radiación , Rodio/química , Estroncio/química , Titanio/química , Catálisis , Luz , Oxidación-Reducción , Estructura Secundaria de Proteína/efectos de la radiaciónRESUMEN
A number of sperm proteins are involved in the processes from gamete adhesion to fusion, but the underlying mechanism is still unclear. Here, we established a mouse mutant, the EQUATORIN-knockout (EQTN-KO, Eqtn - / - ) mouse model and found that the EQTN-KO males have reduced fertility and sperm-egg adhesion, while the EQTN-KO females are fertile. Eqtn - / - sperm were normal in morphology and motility. Eqtn - / - -Tg (Acr-Egfp) sperm, which were produced as the acrosome reporter by crossing Eqtn - / - with Eqtn +/+ -Tg(Acr-Egfp) mice, traveled to the oviduct ampulla and penetrated the egg zona pellucida of WT females. However, Eqtn - / - males mated with WT females showed significant reduction in both fertility and the number of sperm attached to the zona-free oocyte. Sperm IZUMO1 and egg CD9 behaved normally in Eqtn - / - sperm when they were fertilized with WT egg. Another acrosomal protein, SPESP1, behaved aberrantly in Eqtn - / - sperm during the acrosome reaction. The fertility impairment of EQTN/SPESP1-double KO males lacking Eqtn and Spesp1 (Eqtn/Spesp1 - / - ) was more severe compared with that of Eqtn - / - males. Eqtn - / - -Tg (Eqtn) males, which were generated to rescue Eqtn - / - males, restored the reduced fertility.
Asunto(s)
Fertilidad , Infertilidad Masculina/metabolismo , Proteínas de la Membrana/deficiencia , Oocitos/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/metabolismo , Reacción Acrosómica , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Eliminación de Gen , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismoRESUMEN
Autophagic recycling of cell parts is generally termed as the opposite of cell death. Here, we explored the relation between cell death and autophagy by examining granulosa cell layers that control oocyte quality, which is important for the success of fertilization. Granulosa cell layers were collected from infertile women and morphologically divided into four types, viz., mature (MCCs), immature (ICCs), and dysmature cumulus cells (DCCs), and mural granulosa cells (MGCs). Microtubule-associated protein light chain 3 (LC3), which is involved in autophagosome formation, was expressed excessively in DCCs and MGCs, and their chromosomal DNA was highly fragmented. However, autophagy initiation was limited to MGCs, as indicated by the expression of membrane-bound LC3-II and autophagy-related protein 7 (ATG7), an enzyme that converts LC3-I to LC3-II. Although pro-LC3 was accumulated, autophagy was disabled in DCCs, resulting in cell death. Our results suggest the possibility that autophagy-independent accumulation of pro-LC3 proteins leads to the death of human granulosa cells surrounding the oocytes and presumably reduces oocyte quality and female fertility.
RESUMEN
A visible-light-responsive Rh-Sb co-doped SrTiO3 photocatalyst (STO:Rh,Sb) via a solid-state reaction was successfully developed, following pulverization by using ball-milling. The prepared STO:Rh,Sb exhibited a large surface area and showed efficient photocatalytic degradation of acetaldehyde. The photocatalytic activity of STO:Rh,Sb ground for 60 min exceeded that of STO:Rh ground for 60 min (photocatalyst doped without antimony), indicating that doped antimony plays an important role in suppressing the Rh4+, which works as a recombination center, in STO:Rh,Sb. Furthermore, the photocatalytic performance of STO:Rh,Sb ground for 60 min was sustained over 3 cycles, confirming the chemical stability of the photocatalyst. Therefore, ground STO:Rh,Sb has the potential to be applied to environmental remediation under visible light irradiation.
RESUMEN
Aim: To evaluate the use of frozen embryos on the outcome of assisted reproductive technology (ART), a retrospective study of the Japanese Assisted Reproductive Technology Registry data during the years 2007-2012 was conducted. Methods: A total of 124 946 singleton neonates who reached term gestation following ART from 2007-2012, with 80 660 achieved through frozen-thawed embryo transfer (ET) and 44 286 being achieved through fresh ET, were analyzed for their birthweights and chromosomal abnormalities. Results: The birthweight of the neonates from the frozen-thawed ETs was significantly higher than that of those from the fresh ETs throughout all the study years. The frequency of Down syndrome was 0.17% for the fresh ETs and 0.13% for the frozen-thawed ETs in the period 2007-2012. This study showed that frozen-thawed ETs result in a constant increase of the average birthweight between 37 and 41 weeks gestational age and lower frequencies of Down syndrome. Conclusion: Frozen-thawed ETs were comparable to the fresh ET method, with the exceptions of higher birthweights and a lower frequency of Down syndrome in the neonates that were born from frozen-thawed ET. The increase in birthweights was not proportional to the gestational ages. This cannot be explained with any well-known mechanism. The frequency of chromosomal abnormalities needs detailed data for analysis.
RESUMEN
Bacteriophage (denoted as phage) infection in the bacterial fermentation industry is a major problem, leading to the loss of fermented products such as alcohol and lactic acid. Currently, the prevention of phage infection is limited to biological approaches, which are difficult to apply in an industrial setting. Herein, we report an alternative chemical approach using ground Rh-doped SrTiO3 (denoted as g-STO:Rh) as a visible-light-driven photocatalyst. The g-STO:Rh showed selective inactivation of phage without bactericidal activity when irradiated with visible light (λ > 440 nm). After inactivation, the color of g-STO:Rh changed from gray to purple, suggesting that the Rh valence state partially changed from 3+ to 4+ induced by photocatalysis, as confirmed by diffuse reflectance spectroscopy. To study the effect of the Rh4+ ion on phage inactivation under visible-light irradiation, the survival rate of phage for g-STO:Rh was compared to that for ground Rh,Sb-codoped SrTiO3 (denoted as g-STO:Rh,Sb), where the change of Rh valence state from 3+ to 4+ is almost suppressed under visible-light irradiation due to charge compensation by the Sb5+ ion. Only g-STO:Rh effectively inactivated phage, which indicated that Rh4+ ion induced by photocatalysis particularly contributed to phage inactivation under visible-light irradiation. These results suggested that g-STO:Rh has potential as an antiphage material in bacterial fermentation.