Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202408358, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984565

RESUMEN

Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.

2.
J Am Chem Soc ; 146(21): 14610-14619, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682247

RESUMEN

Cu nanoclusters exhibit distinctive physicochemical properties and hold significant potential for multifaceted applications. Although Cu nanoclusters are synthesized by reacting Cu ions and reducing agents by covering their surfaces using organic protecting ligands or supporting them inside porous materials, the synthesis of surface-exposed Cu nanoclusters with a controlled number of Cu atoms remains challenging. This study presents a solid-state reduction method for the synthesis of Cu nanoclusters employing a ring-shaped polyoxometalate (POM) as a structurally defined and rigid molecular nanoreactor. Through the reduction of Cu2+ incorporated within the cavity of a ring-shaped POM using H2 at 140 °C, spectroscopic studies and single-crystal X-ray diffraction analysis revealed the formation of surface-exposed Cu nanoclusters with a defined number of Cu atoms within the cavities of POMs. Furthermore, the Cu nanoclusters underwent a reversible redox transformation within the cavity upon alternating the gas atmosphere (i.e., H2 or O2). These Cu nanoclusters produced active hydrogen species that can efficiently hydrogenate various functional groups such as alkenes, alkynes, carbonyls, and nitro groups using H2 as a reductant. We expect that this synthesis approach will facilitate the development of a wide variety of metal nanoclusters with high reactivity and unexplored properties.

3.
Angew Chem Int Ed Engl ; 63(17): e202401526, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388816

RESUMEN

Here, doubly protonated Lindqvist-type niobium oxide cluster [H2(Nb6O19)]6-, fabricated by microwave-assisted hydrothermal synthesis, exhibited superbase catalysis for Knoevenagel and crossed aldol condensation reactions accompanied by activating C-H bond with pKa >26 and proton abstraction from a base indicator with pKa=26.5. Surprisingly, [H2(Nb6O19)]6- exhibited water-tolerant superbase properties for Knoevenagel and crossed aldol condensation reactions in the presence of water, although it is well known that the strong basicity of metal oxides and organic superbase is typically lost by the adsorption of water. Density functional theory calculation revealed that the basic surface oxygens that share the corner of NbO6 units in [H2(Nb6O19)]8- maintained the negative charges even after proton adsorption. This proton capacity and the presence of un-protonated basic sites led to the water tolerance of the superbase catalysis.

4.
Nat Commun ; 15(1): 851, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321026

RESUMEN

Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA