Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hemasphere ; 8(10): e70007, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39380843

RESUMEN

Severe cytokine release syndrome (sCRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have limited the widespread use of chimeric antigen receptor T (CAR T)-cell therapy. We designed a novel anti-CD19 CAR (ssCART-19) with a small hairpin RNA (shRNA) element to silence the interleukin-6 (IL-6) gene, hypothesizing it could reduce sCRS and ICANS by alleviating monocyte activation and proinflammatory cytokine release. In a post hoc analysis of two clinical trials, we compared ssCART-19 with common CAR T-cells (cCART-19) in relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). Among 87 patients, 47 received ssCART-19 and 40 received cCART-19. Grade ≥3 CRS occurred in 14.89% (7/47) of the ssCART-19 group versus 37.5% (15/40) in the cCART-19 group (p = 0.036). ICANS occurred in 4.26% (2/47) of the ssCART-19 group (all grade 1) compared to 15% (2/40) of the cCART-19 group. Patients in the ssCART-19 group showed comparable rates of treatment response (calculated with rates of complete remission and incomplete hematological recovery) were 91.49% (43/47) for ssCART-19 and 85% (34/40) for cCART-19 (p = 0.999). With a median follow-up of 21.9 months, cumulative nonrelapse mortality was 10.4% for ssCART-19 and 13.6% for cCART-19 (p = 0.33). Median overall survival was 37.17 months for ssCART-19 and 32.93 months for cCART-19 (p = 0.40). Median progression-free survival was 24.17 months for ssCART-19 and 9.33 months for cCART-19 (p = 0.23). These data support the safety and efficacy of ssCART-19 for r/r B-ALL, suggesting its potential as a promising therapy.

2.
Heliyon ; 10(3): e25229, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333787

RESUMEN

High-altitude areas are characterized by low pressure and hypoxia, which have a significant impact on various body systems. This study aimed to investigate the alterations in cardiac index and right ventricular hypertrophy index(RVHI) in rats at different altitudes.Twenty-one male Sprague-Dawley (SD) rats aged 4 weeks were randomly divided into three groups based on altitude. The rats were raised for 28 weeks and then transferred to Qinghai University Plateau Medicine Laboratory. Body weight was measured, heart organs were isolated and weighed, and cardiac index and right ventricular hypertrophy index were determined. Statistical analysis was performed on the data from the three groups. Compared with the plain group, the body weight of the middle-altitude group was significantly decreased (P < 0.05), and cardiac index, RVHI-1, RVHI-2 increased significantly ((P < 0.05). The body weight, whole heart mass, right ventricular mass were significantly decreased in high-altitude group (P < 0.05), RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Compared with the middle-altitude group, the body weight, whole heart mass and right ventricular mass of the high-altitude group were significantly decreased (P < 0.05), and RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Increasing altitude led to a decrease in body weight, whole heart mass, and right ventricular mass in rats, indicating structural changes in the right heart. Additionally, the proportion of right heart to body weight and whole heart increased with altitude.

3.
Food Funct ; 15(2): 967-976, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38175708

RESUMEN

Increasing evidence suggests that brown adipose tissue (BAT) plays an important role in obesity and related diseases. Increasing the amount or activity of BAT could prevent obesity. Therefore, a safe and effective method of activating BAT is urgently required. Here, we evaluated the potential effects of lotus leaf extract (LLE) on BAT function. We found that LLE substantially increased UCP1 mRNA and protein levels as well as thermogenic protein expression in primary brown adipocytes. Additionally, LLE treatment reduced diet-induced obesity and improved glucose homeostasis owing to BAT activation and increased energy expenditure. We found that nuciferine, an active ingredient of LLE, could dose-dependently activate BAT in vitro and in vivo, alleviate diet-induced obesity, and improve glucose homeostasis by increasing energy expenditure. Mechanistically, we found that nuciferine induced PPARG coactivator 1 alpha (PGC1-α) expression, which is a key gene involved in mitochondrial biogenesis promoter activity, by directly binding to RXRA. Furthermore, RXRA knockdown abolished expression of the nuciferine-induced mitochondrial and thermogenesis-related gene in primary brown adipocytes. In summary, we found that LLE and nuciferine have a notable effect on BAT activation and highlight the potential applications of the main component of LLE in preventing obesity and treating metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Aporfinas , Humanos , Tejido Adiposo Pardo/metabolismo , Obesidad/genética , Obesidad/prevención & control , Obesidad/metabolismo , Aporfinas/farmacología , Metabolismo Energético , Glucosa/metabolismo
4.
Int Heart J ; 64(5): 928-934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778996

RESUMEN

This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.


Asunto(s)
Altitud , Imagen de Perfusión Miocárdica , Ratas , Animales , Microcirculación , Tomografía Computarizada por Rayos X/métodos , Hipoxia , Miocardio , Imagen de Perfusión
5.
World J Gastroenterol ; 29(20): 3103-3118, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37346154

RESUMEN

BACKGROUND: The transforming growth factor ß (TGFß) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFß type II receptor (TGFßR2), followed by the recruitment of TGFßR1 finally triggering downstream signaling pathway. AIM: To find drugs targeting TGFßR2 that inhibit TGFßR1/TGFßR2 complex formation, theoretically inhibit TGFß signaling pathway, and thereby ameliorate liver fibrosis. METHODS: Food and Drug Administration-approved drugs were screened for binding affinity with TGFßR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8 (CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect. RESULTS: We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine (DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFß induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFßR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFßR2 disrupted the binding of TGFßR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson's trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver. CONCLUSION: DHE alleviates liver fibrosis by binding to TGFßR2 thereby suppressing TGFß signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.


Asunto(s)
Dihidroergotamina , Cirrosis Hepática , Ratones , Animales , Receptor Tipo II de Factor de Crecimiento Transformador beta , Dihidroergotamina/efectos adversos , Simulación del Acoplamiento Molecular , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Cirrosis Hepática/inducido químicamente , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Receptores de Factores de Crecimiento Transformadores beta/genética
6.
Microbiol Spectr ; 11(3): e0429422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039510

RESUMEN

Alcohol is an essential drug in human life with multiple medical functions, but excessive alcohol intake, even a single episode of binge drinking, can cause serious damage. Reducing alcohol consumption or absorption is a direct way to alleviate the related harm. Alcohol is decomposed successively by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver. Here, we produced a human ADH1B (hADH1B)-expressing probiotic, a recombinant Lactococcus lactis, that aimed to enhance alcohol degradation in the intestinal tract after oral administration. Our results showed that the oral hADH1B-expressing probiotic reduced alcohol absorption, prolonged the alcohol tolerance time, and shortened the recovery time after acute alcohol challenge. More importantly, the liver and intestine were protected from acute injury caused by alcohol challenge. Therefore, the engineered probiotic has the potential to protect organ damage from alcohol consumption. Furthermore, this engineered probiotic may have beneficial effects on alcohol-related diseases such as alcoholic fatty liver disease. IMPORTANCE Alcohol plays an important role in medical treatment, culture, and social interaction. However, excessive alcohol consumption or improper alcohol intake patterns can lead to serious damage to health. Aiming to reduce the harm of alcohol consumption, we designed a recombinant probiotic expressing hADH1B. Our results showed that this recombinant probiotic can reduce alcohol absorption and protect the body from alcohol damage, including hangover, liver, and intestinal damage. Reducing alcohol damage is helpful to the health of people with difficulty in abstinence. The engineered probiotic may provide new strategies for treatment and prevention of the negative effects of alcohol, and it also has the potential for widespread application.


Asunto(s)
Etanol , Probióticos , Humanos , Ratones , Animales , Etanol/metabolismo , Consumo de Bebidas Alcohólicas , Hígado/metabolismo , Alcohol Deshidrogenasa/genética , Probióticos/uso terapéutico
7.
Ann Med ; 55(1): 898-907, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36896573

RESUMEN

BACKGROUND: The purpose of this study was to explore the changes in blood cellular and biochemical parameters of rats in a natural environment of low pressure and low oxygen on the plateau. METHODS: Male Sprague-Dawley rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. They were raised to 28 weeks of age and then transported to the plateau medical laboratory of Qinghai University. Blood cellular and biochemical parameters were measured and the data of the two groups were statistically analyzed. RESULTS: 1. RBC in the HA group was higher than that in the Control group, but there was no significant difference between the two groups (p > 0.05), Compared with the Control group, HGB, MCV, MCH, MCHC and RDW in the HA group were significantly higher (p < 0.05). 2. Compared with the Control group, WBC, LYMP, EO, LYMP% and EO% in the HA group decreased significantly (p < 0.05), and ANC% increased significantly (p < 0.05). 3. In the platelet index, compared with the Control group, PLT in the HA group was significantly reduced (p < 0.05), PDW, MRV, P-LCR were significantly increased (p < 0.05). 4. In blood biochemical indicators, compared with the Control group, AST, TBIL, IBIL, LDH in the HA group decreased significantly (p < 0.05), CK in the HA group increased significantly (p < 0.05). CONCLUSIONS: 1. The indexes related to red blood cells, white blood cells, platelets and some biochemical indexes in the blood of rats at high altitude have changed. 2. Under the high altitude environment, the oxygen carrying capacity of SD rats is improved, the resistance to disease may be reduced, the coagulation and hemostasis functions may be affected, and there is a risk of bleeding. The liver function, renal function, heart function and skeletal muscle energy metabolism may be affected. 3. This study can provide an experimental basis for the research on the pathogenesis of high-altitude diseases from the perspective of blood.KEY MESSAGESIn this study, red blood cells, white blood cells, platelets and blood biochemical indicators were included in the real plateau environment to comprehensively analyze the changes of blood cellular and biochemical parameters in rats under the chronic plateau hypobaric hypoxia environment.From the perspective of blood, this study can provide an experimental basis for research on the pathogenesis of high-altitude diseases.Explore the data support of oxygen-carrying capacity, disease resistance and energy metabolism of the body in the natural environment at high altitude.


Asunto(s)
Altitud , Hipoxia , Ratas , Masculino , Humanos , Animales , Ratas Sprague-Dawley , Hipoxia/metabolismo , Oxígeno , Músculo Esquelético
8.
Front Physiol ; 13: 950619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051914

RESUMEN

The intermittent fasting regimen (IFR) has been certified as an effective strategy for improving metabolism. But the underlying mechanism is still obscure. Beige induction in white adipose tissue (WAT) by IFR may account for this. It has been demonstrated that the erupting of pregnancy zone protein (PZP) from the liver coincides with membrane translocation of grp78 in brown adipocytes during IFR to activate brown adipose tissue (BAT), which may partly explain the metabolic benefits of IFR. Liver-derived PZP appears to be responsible for all metabolic regulatory functions; the effect of boosting energy expenditure disappeared in liver-deficient mice. To verify whether any liver-specific modification was essential for functional PZP, we used the PZP adipose tissue-specific overexpression mice model (PZP TG). We found that the metabolic disorders induced by high-fat diet were improved in PZP TG mice under IFR. Additionally, in addition to the activation of BAT, UCP1 protein and angiogenesis were increased in WAT, as well as the expression of genes associated with glucose utilization. These results demonstrate that PZP fat-specific TG increased the energy conversion of WAT, indicating that WAT may be another direct target for PZP during IFR.

9.
Br J Pharmacol ; 179(18): 4563-4574, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751868

RESUMEN

BACKGROUND AND PURPOSE: Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex aetiology, there is no currently effective cure for PCOS. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients, and BAT activation has beneficial effects in animal models of PCOS. Here, we investigated the effect of ginsenoside compound K (CK) in an animal model of PCOS and its mechanism of BAT activation. EXPERIMENTAL APPROACH: Primary brown adipocytes, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the effect of CK on overall energy metabolism. Oestrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were also evaluated following CK treatment. KEY RESULTS: Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, oestrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly up-regulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment. CONCLUSION AND IMPLICATIONS: In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.


Asunto(s)
Ginsenósidos , Síndrome del Ovario Poliquístico , Tejido Adiposo Pardo/metabolismo , Animales , Deshidroepiandrosterona/efectos adversos , Modelos Animales de Enfermedad , Femenino , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Ratones , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Ratas
10.
Am J Physiol Endocrinol Metab ; 323(1): E69-E79, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575231

RESUMEN

Brown adipose tissue (BAT) is the primary site of adaptive thermogenesis, which is involved in energy expenditure and has received much attention in the field of obesity treatment. By screening a small-molecule compound library of drugs approved by the Food and Drug Administration, pantothenic acid was identified as being able to significantly upregulate the expression of uncoupling protein 1 (UCP1), a key thermogenic protein found in BAT. Pantothenate (PA) treatment decreased adiposity, reversed hepatic steatosis, and improved glucose homeostasis by increasing energy expenditure in C57BL/6J mice fed a high-fat diet. PA also significantly increased BAT activity and induced beige adipocytes formation. Mechanistically, the beneficial effects were mediated by UCP1 because PA treatment was unable to ameliorate obesity in UCP1 knockout mice. In conclusion, we identified PA as an effective BAT activator that can prevent obesity and may represent a promising strategy for the clinical treatment of obesity and related metabolic diseases.NEW & NOTEWORTHY PA treatment effectively and safely protected against obesity via the BAT-UCP1 axis. PA has therapeutic potential for treating obesity and type II diabetes.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Tipo 2 , Tejido Adiposo Pardo/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Termogénesis , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Zool Res ; 43(2): 275-284, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35238185

RESUMEN

Environmental temperature serves as a major driver of adaptive changes in wild organisms. To discover the mechanisms underpinning cold tolerance in domestic animals, we sequenced the genomes of 28 cattle from warm and cold areas across China. By characterizing the population structure and demographic history, we identified two genetic clusters, i.e., northern and southern groups, as well as a common historic population peak at 30 kilo years ago. Genomic scan of cold-tolerant breeds determined potential candidate genes in the thermogenesis-related pathways that were under selection. Specifically, functional analysis identified a substitution of PRDM16 (p.P779L) in northern cattle, which maintains brown adipocyte formation by boosting thermogenesis-related gene expression, indicating a vital role of this gene in cold tolerance. These findings provide a basis for genetic variation in domestic cattle shaped by environmental temperature and highlight the role of reverse mutation in livestock species.


Asunto(s)
Metagenómica , Termogénesis , Animales , Bovinos/genética , China , Frío , Genoma , Termogénesis/genética
12.
Korean J Parasitol ; 60(6): 413-417, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36588418

RESUMEN

We retrospectively evaluated the clinical and imaging features of 6 patients with bone hydatid disease confirmed by surgery and pathological examination. Among the 6 patients, 2 were infected with Echinococcosis granulosus metacestode and 4 were infected with E. multilocularis metacestode. The 2 cases with cystic echinococcosis were diagnosed by computed tomographic (CT) examination, and other 4 cases were diagnosed by magnetic resonance (MR) imaging. On the initial evaluation, 1 case each was misdiagnosed as a giant cell tumor or neurogenic tumor, and 2 were misdiagnosed as tuberculosis. The imaging manifestations of bone hydatid disease are complex, but most common findings include expansive osteolytic bone destruction, which may be associated with sclerosing edges or dead bone formation, localized soft tissue masses, and vertebral lesions with wedge-shaped changes and spinal stenosis. Combining imaging findings with the patient's epidemiological history and immunological examinations is of great help in improving the diagnosis and differential diagnosis of bone hydatid disease.


Asunto(s)
Equinococosis , Echinococcus granulosus , Animales , Humanos , Estudios Retrospectivos , Equinococosis/diagnóstico por imagen , Equinococosis/patología , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética , Errores Diagnósticos
13.
Int J Biol Macromol ; 194: 556-562, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822828

RESUMEN

TGFß1 signaling pathway is associated with many diseases, which can induce the activation of hepatic stellate cells (HSCs) and induce liver fibrosis. Studies have shown that 20S-protopanaxadiol (PPD) has a therapeutic effect on liver fibrosis, but the target is unknown. In this study, we confirmed that PPD reduced the mRNA expression of downstream genes of the TGFß1 pathway, which suggesting PPD is associated with the TGFß1 pathway. The protein dissociation temperature and dissociation constant (Kd) of PPD on TGFßR1 and TGFßR2 were determined, which showed that PPD combined with TGFßR1 (Kd = 1.54 µM). The docking and simulation methods were used to find their binding sites. Site mutations, protein expression and in vitro binding experiments were performed to demonstrated these sites. In particular, these sites of TGFßR1 were also the active sites of TGFßR2. Therefore, we speculated that PPD blocked the combination of TGFßR1 and TGFßR2 by binding to the D57, R58, P59, and N78 of the TGFßR1 extracellular domain. Thus, PPD could block the transmission of TGFß1 pathway and inhibit the activation of HSCs, and treating fibrosis. Our studies showed that PPD has the potential to treat diseases related to the TGFß1 pathway and broadens its clinical application.


Asunto(s)
Ginsenósidos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Sapogeninas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular , Células Estrelladas Hepáticas/patología , Humanos
14.
Front Endocrinol (Lausanne) ; 12: 744628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721298

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrine disease accompanied by energetic metabolic imbalance. Because the etiology of PCOS is complex and remains unclear, there is no effective and specific treatment for PCOS. It is often accompanied by various metabolic disorders such as obesity, insulin resistances, and others. Activated brown adipose tissue (BAT) consumes excess energy via thermogenesis, which has positive effects on energy metabolism. Our previous research and that of others indicates that BAT activity is decreased in PCOS patients, and exogenous BAT transplantation can improve PCOS rodents. Notably however, it is difficult to apply this therapeutic strategy in clinical practice. Therapeutic strategies of enhancing endogenous BAT activity and restoring whole-body endocrine homeostasis may be more meaningful for PCOS treatment. In the current study, the dehydroepiandrosterone-induced PCOS rat was exposed to low temperature for 20 days. The results show that cold treatment could reverse acyclicity of the estrous cycle and reduce circulating testosterone and luteinizing hormone in PCOS rats by activating endogenous BAT. It also significantly reduced the expression of steroidogenic enzymes as well as inflammatory factors in the ovaries of PCOS rats. Histological investigations revealed that cold treatment could significantly reduce ovary cystic follicles and increase corpus luteum, indicating that ovulation was recovered to a normal level. Concordant with these results, cold treatment also improved fertility in PCOS rats. Collectively, these findings suggest that cold treatment could be a novel therapeutic strategy for PCOS.


Asunto(s)
Tejido Adiposo Pardo/fisiopatología , Frío , Síndrome del Ovario Poliquístico/fisiopatología , Síndrome del Ovario Poliquístico/terapia , Tejido Adiposo Blanco , Animales , Cuerpo Lúteo , Deshidroepiandrosterona , Ciclo Estral , Femenino , Fertilidad , Homeostasis , Infertilidad Femenina/terapia , Hormona Luteinizante/sangre , Folículo Ovárico , Ovulación , Síndrome del Ovario Poliquístico/inducido químicamente , Ratas , Ratas Sprague-Dawley , Testosterona/sangre
15.
Adv Sci (Weinh) ; 8(21): e2101991, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34514733

RESUMEN

Intermittent fasting (IF), as a dietary intervention for weight loss, takes effects primarily through increasing energy expenditure. However, whether inter-organ systems play a key role in IF remains unclear. Here, a novel hepatokine, pregnancy zone protein (PZP) is identified, which has significant induction during the refeeding stage of IF. Further, loss of function studies and protein therapeutic experiment in mice revealed that PZP promotes diet-induced thermogenesis through activating brown adipose tissue (BAT). Mechanistically, circulating PZP can bind to cell surface glucose-regulated protein of 78 kDa (GRP78) to promote uncoupling protein 1 (UCP1) expression via a p38 MAPK-ATF2 signaling pathway in BAT. These studies illuminate a systemic regulation in which the IF promotes BAT thermogenesis through the endocrinal system and provide a novel potential target for treating obesity and related disorders.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa , Obesidad/patología , Proteínas Gestacionales/metabolismo , Termogénesis/fisiología , Adulto , Animales , Chaperón BiP del Retículo Endoplásmico/antagonistas & inhibidores , Chaperón BiP del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/metabolismo , Proteínas Gestacionales/sangre , Proteínas Gestacionales/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Appl Microbiol Biotechnol ; 105(14-15): 6007-6018, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34390354

RESUMEN

Liver fibrosis is caused by the accumulation of extracellular matrix proteins on the surface of hepatocytes and results from chronic liver injury. TGFß1 is one of the most important promoters of hepatic fibrosis, which accelerates the transformation of hepatic stellate cells to myofibroblasts and collagen expression. It is well-known that TGFß1 binds to TGFßR2 to mediate its downstream signal cascades to regulate target gene transcription. Therefore, the TGFßR2 blocker might be a prominent drug candidate. We constructed TGFßR2 extracellular domain into living biotherapeutics Lactococcus lactis to reduce hepatic fibrosis in CCl4 treated mice in the present study. We found that the culture supernatant of the recombinant bacteria can inhibit the TGFß1-induced collagen synthesis in the hepatic stellate cells at the cellular level. In addition, results of in vivo study showed that the recombinant bacteria significantly reduced the degree of liver fibrosis in CCl4-treated mice. Furthermore, flow cytometry results indicated that the recombinant bacteria treatment significantly reduced the CD11b+ Kupffer cells compared with the empty vector bacteria group. Consistently, fibrosis-related gene and protein expression were significantly reduced upon recombinant bacteria treatment. Finally, the subchronic toxicity test results showed that this bacteria strain did not have any significant side effects. In conclusion, our recombinant Lactococcus lactis shows tremendous therapeutic potential in liver fibrosis. KEY POINTS: • The supernatant of L. lactis expressing TGFßR2 inhibits the activation of myofibroblast. • The oral recombinant strain reduced the degree of liver fibrosis and inflammation in mice. • The recombinant strain was safe in subchronic toxicity test in mice.


Asunto(s)
Lactococcus lactis , Animales , Colágeno , Hepatocitos , Lactococcus lactis/genética , Cirrosis Hepática/prevención & control , Ratones
17.
Gut ; 69(7): 1239-1247, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31744910

RESUMEN

OBJECTIVE: Dietary fibre has beneficial effects on energy metabolism, and the majority of studies have focused on short-chain fatty acids produced by gut microbiota. Ginseng has been reported to aid in body weight management, however, its mechanism of action is not yet clear. In this study, we focused on the potential modulating effect of ginseng on gut microbiota, aiming to identify specific strains and their metabolites, especially long-chain fatty acids (LCFA), which mediate the anti-obesity effects of ginseng. DESIGN: Db/db mice were gavaged with ginseng extract (GE) and the effects of GE on gut microbiota were evaluated using 16S rDNA-based high throughput sequencing. To confirm the candidate fatty acids, untargeted metabolomics analyses of the serum and medium samples were performed. RESULTS: We demonstrated that GE can induce Enterococcus faecalis, which can produce an unsaturated LCFA, myristoleic acid (MA). Our results indicate that E. faecalis and its metabolite MA can reduce adiposity by brown adipose tissue (BAT) activation and beige fat formation. In addition, the gene of E. faecalis encoding Acyl-CoA thioesterases (ACOTs) exhibited the biosynthetic potential to synthesise MA, as knockdown (KD) of the ACOT gene by CRISPR-dCas9 significantly reduced MA production. Furthermore, exogenous treatment with KD E. faecalis could not reproduce the beneficial effects of wild type E. faecalis, which work by augmenting the circulating MA levels. CONCLUSIONS: Our results demonstrated that the gut microbiota-LCFA-BAT axis plays an important role in host metabolism, which may provide a strategic advantage for the next generation of anti-obesity drug development.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Enterococcus faecalis/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Obesidad/metabolismo , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Panax , Extractos Vegetales/farmacología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA