Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2406280, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39295522

RESUMEN

Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.


Asunto(s)
Anticuerpos Antivirales , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Vacunas de Partículas Similares a Virus , Animales , Perros , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/genética , Ratones , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Rabia/prevención & control , Rabia/inmunología , Gatos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Virus de la Viruela de los Canarios/inmunología , Virus de la Viruela de los Canarios/genética , Vectores Genéticos/genética , Femenino , Células Dendríticas/inmunología , Inmunidad Humoral , Sistemas CRISPR-Cas , Ratones Endogámicos BALB C
2.
Signal Transduct Target Ther ; 9(1): 223, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256346

RESUMEN

To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.


Asunto(s)
Enfermedades Transmisibles Emergentes , Humanos , Animales , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Modelos Animales de Enfermedad
3.
Emerg Microbes Infect ; 13(1): 2392651, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155772

RESUMEN

Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ebolavirus/inmunología , Ebolavirus/genética , Anticuerpos Monoclonales/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Anticuerpos Antivirales/inmunología , Cricetinae , Ratones , Anticuerpos Neutralizantes/inmunología , Humanos , Ratones Transgénicos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Reacciones Cruzadas
4.
Endoscopy ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39053503

RESUMEN

BACKGROUND: Colonoscopy is essential for diagnosing colorectal diseases but can cause pain during the procedure. This study explored the analgesic effects of transcutaneous electrical nerve stimulation based on wrist-ankle acupuncture theory (TENS-WAA) in colonoscopy without anesthesia. METHODS: This prospective study included 120 participants undergoing colonoscopies without anesthesia. The trial group received low-frequency, high-intensity TENS-WAA adjusted to the maximum tolerable current, while the control group received minimal current. The primary outcome was the retrospective pain score on a visual analog scale (VAS). Secondary outcomes included time, heart rate, and credibility/expectancy questionnaire (CEQ) scores. RESULTS: Participants who received TENS-WAA reported significantly lower pain VAS scores than the control group (estimated median difference -1.1, 95%CI -2 to -0.4; P = 0.002). Male participants in the trial group experienced significantly lower pain scores than the control group (mean difference -1.4, 95%CI -2.41 to -0.39; P = 0.008). The trial group showed significantly less variation in heart rates (P<0.001) and higher CEQ scores (P = 0.001) than the control group. No adverse events were reported. CONCLUSION: TENS-WAA effectively reduced pain during colonoscopy without anesthesia, especially in male participants, providing a promising noninvasive analgesic method.

5.
J Virol ; 98(7): e0052124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38874361

RESUMEN

The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE: MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virus Vaccinia , Animales , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Ratones , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Femenino , Humanos , Ratones Endogámicos BALB C , Multimerización de Proteína , Inmunoglobulina G/inmunología , Linfocitos T Citotóxicos/inmunología , Inmunoglobulina A/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/genética , Vectores Genéticos
6.
Antiviral Res ; 227: 105905, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38740191

RESUMEN

The rapid emergence of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) variants, coupled with severe immune evasion and imprinting, has jeopardized the vaccine efficacy, necessitating urgent development of broad protective vaccines. Here, we propose a strategy employing recombinant rabies viruses (RABV) to create a universal SARS-CoV-2 vaccine expressing heterologous tandem receptor-binding domain (RBD) trimer from the SARS-CoV-2 Prototype, Delta, and Omicron strains (SRV-PDO). The results of mouse immunization indicated that SRV-PDO effectively induced cellular and humoral immune responses, and demonstrated higher immunogenicity and broader SARS-CoV-2 neutralization compared to the recombinant RABVs that only expressed RBD monomers. Moreover, SRV-PDO exhibited full protection against SARS-CoV-2 in the challenge assay. This study demonstrates that recombinant RABV expressing tandem RBD-heterotrimer as a multivalent immunogen could elicit a broad-spectrum immune response and potent protection against SARS-CoV-2, making it a promising candidate for future human or veterinary vaccines and offering a novel perspective in other vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , Virus de la Rabia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Vacunas contra la COVID-19/inmunología , Ratones , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Femenino , Humanos , Inmunidad Humoral , Vectores Genéticos , Eficacia de las Vacunas , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/administración & dosificación
7.
Front Cell Infect Microbiol ; 14: 1341332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746783

RESUMEN

Introduction: The Crimean-Congo hemorrhagic fever virus (CCHFV), the most geographically widespread tick-borne virus, is endemic in Africa, Eastern Europe and Asia, with infection resulting in mortality in up to 30% of cases. Currently, there are no approved vaccines or effective therapies available for CCHF. The CCHFV should only be manipulated in the BSL-4 laboratory, which has severely hampered basic seroprevalence studies. Methods: In the present study, two antibody detection methods in the forms of an enzyme-linked immunosorbent assay (ELISA) and a surrogate virus neutralization test (sPVNT) were developed using a recombinant glycoprotein (rGP) and a vesicular stomatitis virus (VSV)-based virus bearing the CCHFV recombinant glycoprotein (rVSV/CCHFV) in a biosafety level 2 (BSL-2) laboratory, respectively. Results: The rGP-based ELISA and rVSV/CCHFV-based sVNT were established by using the anti-CCHFV pre-GC mAb 11E7, known as a broadly cross-reactive, potently neutralizing antibody, and their applications as diagnostic antigens were validated for the specific detection of CCHFV IgG and neutralizing antibodies in experimental animals. In two tests, mAb clone 11E7 (diluted at 1:163840 or 512) still displayed positive binding and neutralization, and the presence of antibodies (IgG and neutralizing) against the rGP and rVSV/CCHFV was also determined in the sera from the experimental animals. Both mAb 11E7 and animal sera showed a high reactivity to both antigens, indicating that bacterially expressed rGP and rVSV/CCHFV have good immunoreactivity. Apart from establishing two serological testing methods, their results also demonstrated an imperfect correlation between IgG and neutralizing antibodies. Discussion: Within this limited number of samples, the rGP and rVSV/CCHFV could be safe and convenient tools with significant potential for research on specific antibodies and serological samples.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Inmunoglobulina G , Pruebas de Neutralización , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pruebas de Neutralización/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/inmunología , Animales , Humanos , Glicoproteínas/inmunología , Pruebas Serológicas/métodos , Proteínas Recombinantes/inmunología , Ratones , Anticuerpos Monoclonales/inmunología
8.
Viruses ; 16(4)2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38675892

RESUMEN

Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus del Moquillo Canino , Moquillo , Vacunas Virales , Animales , Virus del Moquillo Canino/inmunología , Perros , Ratones , Moquillo/prevención & control , Moquillo/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Femenino , Inmunoglobulina G/sangre , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Ratones Endogámicos BALB C , Citocinas/metabolismo , Vacunación
9.
Virus Res ; 345: 199378, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643857

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Virus de la Influenza B , Ratones Endogámicos BALB C , SARS-CoV-2 , Vacunas Atenuadas , Animales , Ratones , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Administración Intranasal , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Inmunoglobulina A/sangre , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Carga Viral , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología
10.
Antiviral Res ; 225: 105854, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447647

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Ratones , Animales , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Sistemas CRISPR-Cas , Edición Génica , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Virol Sin ; 39(3): 434-446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556051

RESUMEN

The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Mesocricetus , Animales , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/patología , Ebolavirus/genética , Ebolavirus/patogenicidad , Femenino , Humanos , Vesiculovirus/genética , Vesiculovirus/patogenicidad , Anticuerpos Antivirales/sangre , Cricetinae , Carga Viral , Glicoproteínas/genética , Glicoproteínas/inmunología
12.
Int J Biol Macromol ; 264(Pt 2): 130820, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484812

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Cricetinae , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Innata , Ferritinas/genética , Nanovacunas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
14.
Cancer Rep (Hoboken) ; 7(2): e1918, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38073600

RESUMEN

OBJECTIVES: To analyze the clinical characteristics and influencing factors of hepatotoxicity in patients with advanced hepatocellular carcinoma (HCC) treated with programmed cell death protein-1 (PD-1) inhibitors, and to provide a theoretical basis for the treatment of immune-related hepatotoxicity in patients with advanced HCC. METHODS: Retrospective analysis of clinical data of patients with advanced HCC from February 2021 to February 2023, in order to summarize and statistically analyze the influencing factors of immune-related liver adverse reactions. RESULTS: A total of 135 patients met the inclusion criteria, among whom 46 patients experienced varying degrees of immune-related liver adverse reactions, with an incidence rate of 34.1% (46/135). The time range of immune-related liver adverse reactions was 3-26 weeks, with a median time of 4 weeks. The age range of immune-related liver adverse reactions was 34-73 years, with a median age of 62 years. Statistical analysis of the influencing factors and liver adverse reactions showed that age, total bilirubin level, and Child-Pugh (C-P) grading were influencing factors for the occurrence of liver adverse reactions (p < .05), and among these three influencing factors, the proportion of males with ≥2 influencing factors was higher than that of females; liver function C-P B was an independent influencing factor for liver adverse reactions (p < .05). CONCLUSION: For male patients over 60 years old, with bilirubin levels ≥51 µmol/L and liver function C-P B, close observation of the occurrence of immune-related adverse reactions during treatment is recommended.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias Hepáticas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto , Anciano , Neoplasias Hepáticas/tratamiento farmacológico , Carcinoma Hepatocelular/tratamiento farmacológico , Estudios Retrospectivos , Inmunoterapia/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/epidemiología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Bilirrubina/uso terapéutico
15.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38140162

RESUMEN

Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.

16.
Antiviral Res ; 220: 105765, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38036065

RESUMEN

Coronavirus disease 2019 (COVID-19) seriously threatens public health safety and the global economy, which warrant effective prophylactic and therapeutic approaches. Currently, vaccination and establishment of immunity have significantly reduced the severity and mortality of COVID-19. However, in regard to COVID-19 vaccines, the broad-spectrum protective efficacy against SARS-CoV-2 variants and the blocking of virus transmission need to be further improved. In this study, an optimum oral COVID-19 vaccine candidate, rVSVΔG-Sdelta, was selected from a panel of vesicular stomatitis virus (VSV)-based constructs bearing spike proteins from different SARS-CoV-2 strains. After chitosan modification, rVSVΔG-Sdelta induced both local and peripheral antibody response, particularly, broad-spectrum and long-lasting neutralizing antibodies against SARS-CoV-2 persisted for 1 year. Cross-protection against SARS-CoV-2 WT, Beta, Delta, BA.1, and BA.2 strains was achieved in golden hamsters, which presented as significantly reduced viral replication in the respiratory tract and alleviated pulmonary pathology post SARS-CoV-2 challenge. Overall, this study provides a convenient, oral-delivered, and effective oral mucosal vaccine against COVID-19, which would supplement pools and facilitate the distribution of COVID-19 vaccines.


Asunto(s)
COVID-19 , Quitosano , Animales , Cricetinae , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Mesocricetus , COVID-19/prevención & control , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
17.
Front Mol Biosci ; 10: 1277933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920710

RESUMEN

Bakcground: Prognosis of colorectal cancer (CRC) varies due to complex genetic-microenviromental interactions, and multiple gene-based prognostic models have been highlighted. Material and Method: In this work, the immune-related genes' expression-based model was developed and the scores of each sample were calculated. The correlation between the model and clinical information, immune infiltration, drug response and biological pathways were analyzed. Results: The high-score samples have a significantly longer survival (overall survival and progression-free survival) period than those with a low score, which was validated across seven datasets containing 1,325 samples (GSE17536 (N = 115), GSE17537 (N = 55), GSE33113 (N = 90), GSE37892 (N = 130), GSE38832 (N = 74), GSE39582 (N = 481), and TCGA (N = 380)). The score is significantly associated with clinical indicators, including age and stage, and further associated with PD-1/PD-L1 gene expression. Furthermore, high-score samples have significantly higher APC and a lower MUC5B mutation rate. The high-score samples show more immune infiltration (including CD4+ and CD8+ T cells, M1/M2 macrophages, and NK cells). Enriched pathway analyses showed that cancer-related pathways, including immune-related pathways, were significantly activated in high-score samples and that some drugs have significantly lower IC50 values than those with low score. Conclusion: The model developed based on immune-related genes is robust and reflected various statuses of CRC and may be a potential clinical indicator.

18.
Medicine (Baltimore) ; 102(34): e34806, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37653767

RESUMEN

BACKGROUND: Although colonoscopic retroflexion has been proved effective in reducing missed adenomas, there is still a lack of comprehensive and in-depth research focused on the ascending colon. We aimed to conduct a randomized controlled trial and tandem colonoscopy to investigate whether cecal retroflexion observed during colonoscopy can reduce missed adenomas in the ascending colon. METHODS: Men and women required to be between 45 and 80 years of age were screened for enrollment in the trial. Patients were randomly assigned according to a 1:1 ratio to either the trial group or control group. Patients in the trial group underwent 2 forward examination and a cecal retroflexion observed in the ascending colon, while patients in the control group underwent only 2 forward examinations in the ascending colon. The primary outcome was adenoma miss rate. The secondary outcomes contained adenoma detection rate, polyp miss rate, polyp detection rate, insertion time and withdrawal time. Differences between groups in the primary outcome and in the other categorical indicators were tested using chi-squared test and Fisher exact test. For the comparison of continuous outcomes, the Student t test was applied. RESULTS: A total of 60 subjects were eligible for the study between April to June 2020, of which 55 were randomized and eligible for analysis (26 to the control group and 29 to the trial group). The characteristics of patients were no significant differences statistically between the trial group and the control group. Similarly, the characteristics of the colonoscopy procedures included cecal insertion distance, the length of cecum and ascending colon, insertion time, withdrawal time, quality of bowel preparation, numerical rating scale for pain, polyps detected, and adenomas detected, and there were no significant differences statistically between the 2 groups (P = .864, P = .754, P = .700, P = .974, P = .585, P = .835, P = .373, P = .489). The characteristics of the polyps were also no significant differences statistically between the 2 groups. CONCLUSION: This pilot trial failed to show benefit of cecal retroflexion observed on adenoma missing of ascending colon during colonoscopy; however, further conclusions require a prospective study with a higher level of evidence. (NCT03355443).


Asunto(s)
Adenoma , Colon Ascendente , Masculino , Humanos , Femenino , Estudios Prospectivos , Proyectos Piloto , Ciego , Colonoscopía , Adenoma/diagnóstico
19.
Virol Sin ; 38(5): 787-800, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423308

RESUMEN

The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency, which underscores the urgent need for universal therapeutic antibody intervention for clinical patients. Here, we screened three alpacas-derived nanobodies (Nbs) with neutralizing activity from twenty RBD-specific Nbs. The three Nbs were fused with the Fc domain of human IgG, namely aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc, which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD. They effectively neutralized SARS-CoV-2 pseudoviruses D614G, Alpha, Beta, Gamma, Delta, and Omicron sub-lineages BA.1, BA.2, BA.4, and BA.5 and authentic SARS-CoV-2 prototype, Delta, and Omicron BA.1, BA.2 strains. In mice-adapted COVID-19 severe model, intranasal administration of aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts. In the COVID-19 mild model, aVHH-13-Fc, which represents the optimal neutralizing activity among the above three Nbs, effectively protected hamsters from the challenge of SARS-CoV-2 prototype, Delta, Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs. In structural modeling of aVHH-13 and RBD, aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes. Taken together, our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2, including those Delta and Omicron variants which have evolved into global pandemic strains.


Asunto(s)
COVID-19 , Camélidos del Nuevo Mundo , Anticuerpos de Dominio Único , Cricetinae , Humanos , Animales , Ratones , COVID-19/terapia , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Anticuerpos de Dominio Único/genética , Modelos Animales de Enfermedad , Inmunoglobulina G , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/genética
20.
BMC Cancer ; 23(1): 593, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370037

RESUMEN

BACKGROUND: The lack of effective and accurate predictive indicators remains a major bottleneck for the improvement of the prognosis of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Hepatitis B virus X (HBx) has been widely suggested as a critical pathogenic protein for HBV-driven liver carcinogenesis, while tumor-associated macrophage (TAM) infiltration is also closely related to the tumorigenesis and progression of HCC. However, few studies have determined whether combining HBx expression with TAM populations could increase the accuracy of prognostic prediction for HBV-related HCC. METHODS: The study cohort enrolling 251 patients with HBV-related HCC was randomly split into a training and a validation group (ratio 1:1). The expression levels of HBx and TAM marker CD68 in HCC samples were detected by immunohistochemistry. Kaplan-Meier curves, Cox regression and Harrell's concordance index (C-index) analysis were conducted to evaluate the prognostic significance of these indicators alone or in combination. RESULTS: The expression level of HBx was strongly correlated with CD68+ TAM infiltration in HCC tissues. Elevated HBx or CD68 expression indicated poorer overall survival (OS) and progression-free survival (PFS) after hepatectomy, and both of them were independent risk factors for postoperative survival. Meanwhile, patients with both high HBx and CD68 levels had worst clinical outcomes. Moreover, integrating HBx and CD68 expression with clinical indicators (tumor size and micro-vascular invasion) showed the best prognostic potential with highest C-index value for survival predictivity, and this proposed model also performed better than several conventional classifications of HCC. CONCLUSION: Combining the expression of intratumoral HBx, CD68+ TAM population and clinical variables could enable better prognostication for HBV-related HCC after hepatectomy, thus providing novel insights into developing more effective clinical prediction model based on both molecular phenotypes and tumor-immune microenvironment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Macrófagos Asociados a Tumores/metabolismo , Modelos Estadísticos , Virus de la Hepatitis B/genética , Biomarcadores/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA