Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Biol Int ; 48(6): 848-860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444077

RESUMEN

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.


Asunto(s)
Anoctaminas , Células Endoteliales , Lipoproteínas LDL , Fosfatidilserinas , Especies Reactivas de Oxígeno , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Animales , Humanos , Fosfatidilserinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones , Anoctaminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Masculino , Hiperlipidemias/metabolismo , Calcio/metabolismo , Dieta Alta en Grasa , Trombosis/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Células Cultivadas , Coagulación Sanguínea/efectos de los fármacos
2.
Thromb Haemost ; 123(12): 1116-1128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37364609

RESUMEN

BACKGROUND: Although thrombosis events are the leading complication of uremia, their mechanism is largely unknown. The interaction between endothelial cells (ECs) and red blood cells (RBCs) in uremic solutes and its prothrombotic role need to be investigated. METHODS AND RESULTS: Here, we established an in vitro co-incubation model of uremic RBC and EC as well as a uremic rat model induced by adenine. Using flow cytometry, confocal microscopy, and electron microscopy, we found increased erythrophagocytosis by EC accompanied by increased reactive oxygen species, lipid peroxidation, and impairment of mitochondria, indicating that ECs undergo ferroptosis. Further investigations showed increased proteins' expression of heme oxygenase-1 and ferritin and labile iron pool accumulation in EC, which could be suppressed by deferoxamine (DFO). The ferroptosis-negative regulators glutathione peroxidase 4 and SLC7A11 were decreased in our erythrophagocytosis model and could be enhanced by ferrostatin-1 or DFO. In vivo, we observed that vascular EC phagocytosed RBC and underwent ferroptosis in the kidney of the uremic rat, which could be inhibited by blocking the phagocytic pathway or inhibiting ferroptosis. Next, we found that the high tendency of thrombus formation was accompanied by erythrophagocytosis-induced ferroptosis in vitro and in vivo. Importantly, we further revealed that upregulated TMEM16F expression mediated phosphatidylserine externalization on ferroptotic EC, which contributed to a uremia-associated hypercoagulable state. CONCLUSION: Our results indicate that erythrophagocytosis-triggered ferroptosis followed by phosphatidylserine exposure of EC may play a key role in uremic thrombotic complications, which may be a promising target to prevent thrombogenesis of uremia.


Asunto(s)
Ferroptosis , Trombosis , Uremia , Ratas , Animales , Células Endoteliales/metabolismo , Fosfatidilserinas/metabolismo , Eritrocitos , Uremia/metabolismo
3.
Blood Cells Mol Dis ; 96: 102666, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35567997

RESUMEN

The link between hyperuricemia (HUA) and the risk of venous thromboembolism (VTE) has been well established. However, the mechanisms of thrombus generation and the effect of HUA on procoagulant activity (PCA) of erythrocytes remain unclear no matter in uremia or hyperuricemia. Here, phosphatidylserine (PS) exposure, microparticles (MPs) release, cytosolic Ca2+, TMEM16F expression, reactive oxygen species (ROS) and lipid peroxidation of erythrocyte were detected by flow cytometer. PCA was assessed by coagulation time, purified coagulation complex and fibrin production assays. The fibrin formation was observed by scanning electron microscopy (SEM). We found that PS exposure, MPs generation, TMEM16F expression and consequent PCA of erythrocyte in HUA patients significantly increased compared to those in healthy volunteers. Furthermore, high UA induced PS exposure, and MPs release of erythrocyte in concentration and time-dependent manners in vitro, which enhanced the PCA of erythrocyte and was inhibited by lactadherin, a PS inhibitor. Additionally, using SEM, we also observed compact fibrin clots with highly-branched networks and thin fibers supported by red blood cells (RBCs) and RBC-derived MPs (RMPs). Importantly, we demonstrated UA enhanced the production of ROS and lipid peroxidation and reduced the generation of glutathione (GSH) of erythrocyte, which enhanced TMEM16F activity and followed PS externalization and RMPs formation. Collectively, these results suggest that Ca2+-dependent TMEM16F activation may be responsible for UA-induced PS exposure and MPs release of RBC, which thereby contribute to the prothrombotic risk in HUA.

4.
FASEB J ; 35(9): e21808, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390515

RESUMEN

The link between serum uric acid (SUA) and the risk of venous thromboembolism (VTE) is well established. Recent data suggested a causative role of UA in endothelial cells (ECs) dysfunction. However, the molecular mechanism of high UA on thrombogenesis is unknown. We investigate whether high UA induce phosphatidylserine (PS) externalization and microparticle (MP) shedding in cultured EC, and contribute to UA-induced hypercoagulable state. In the present study, we demonstrate that UA induces PS exposure and EMP release of EC in a concentration- and time-dependent manner, which enhances the procoagulant activity (PCA) of EC and inhibited over 90% by lactadherin in vitro. Furthermore, hyperuricemic rat model was used to evaluate the development of thrombi following by flow stasis in the inferior vena cava (IVC). Hyperuricemia group is more likely to form large and hard thrombi compared with control. Importantly, we found that TMEM16F expression is significantly upregulated in UA-treated EC, which is crucial for UA-induced PS exposure and MP formation. Additionally, UA increases the generation of reactive oxygen species (ROS), lipid peroxidation, and cytosolic Ca2+ concentration in EC, which might contribute to increased TMEM16F expression. Using confocal microscopy, we also observed disruption of the actin cytoskeleton, suggesting that depolymerization of actin filaments might be required for TMEM16F activation and followed by PS exposure and membrane blebbing in UA-treated EC. Our results demonstrate a thrombotic role of EC in hyperuricemia through TMEM16F-mediated PS exposure and MPs release.


Asunto(s)
Anoctaminas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Hiperuricemia/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hiperuricemia/sangre , Peroxidación de Lípido/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Ácido Úrico/sangre
5.
Neurosci Lett ; 558: 41-6, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24211223

RESUMEN

The cerebellum, which is important for movement control and planning, is often affected by many neurological conditions. Until now there has been limited information regarding how the function of the cerebellum impacts driving ability. This study used fMRI with an integrated virtual reality driving simulator to determine which aspects of driving performance are related to the cerebellum in healthy drivers (Experiment 1). It also investigated drivers with focal cerebellar lesions to identify how damage to this brain region impairs driving abilities. The results showed that cerebellar functioning is responsible for motor-speed coordination and complex temporal-motor integration necessary to execute driving behaviours. As predicted, drivers with cerebellar damage, showed significantly compromised speed control during basic driving conditions, whereas their ability to perform during interactive driving situations was preserved. New insights into neural mechanisms and brain plasticity regarding driving behaviour are discussed. Strategies in assessing and rehabilitating drivers with related neurological conditions are provided.


Asunto(s)
Conducción de Automóvil , Lesiones Encefálicas/fisiopatología , Simulación por Computador , Interfaz Usuario-Computador , Cerebelo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA